[Jump to code hierarchy]

Protograph LDPC code[13]

Description

Binary version of a \(q\)-ary protograph LDPC code. Its parity check matrix can be put into the form of a block matrix consisting of either a sum of permutation sub-matrices or the zero sub-matrix.

Protection

The minimum distance of protograph codes is bounded by a function of the number of commuting permutation-matrix blocks [4].

Notes

For reviews on protograph LDPC codes, see Ref. [5].

Cousin

  • Algebraic LDPC code— Some deterministic protograph LDPC codes [6] can be obtained from the theory of voltage graphs [7,8].

Primary Hierarchy

References

[1]
Thorpe, Jeremy. "Low-density parity-check (LDPC) codes constructed from protographs." IPN progress report 42.154 (2003): 42-154.
[2]
D. Divsalar, C. Jones, S. Dolinar, and J. Thorpe, “Protograph based LDPC codes with minimum distance linearly growing with block size”, GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005. (2005) DOI
[3]
D. Divsalar, S. Dolinar, and C. Jones, “Protograph LDPC Codes over Burst Erasure Channels”, MILCOM 2006 (2006) DOI
[4]
D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager Codes for Short Block Length and High Rate Applications”, Codes, Systems, and Graphical Models 113 (2001) DOI
[5]
Y. Fang, G. Bi, Y. L. Guan, and F. C. M. Lau, “A Survey on Protograph LDPC Codes and Their Applications”, IEEE Communications Surveys & Tutorials 17, 1989 (2015) DOI
[6]
C. A. Kelley, “On codes designed via algebraic lifts of graphs”, 2008 46th Annual Allerton Conference on Communication, Control, and Computing (2008) DOI
[7]
C. A. Kelley and J. L. Walker, “LDPC codes from voltage graphs”, 2008 IEEE International Symposium on Information Theory (2008) DOI
[8]
L. W. Beineke, R. J. Wilson, J. L. Gross, and T. W. Tucker, editors , Topics in Topological Graph Theory (Cambridge University Press, 2009) DOI
[9]
D. G. M. Mitchell, R. Smarandache, and D. J. Costello, “Quasi-cyclic LDPC codes based on pre-lifted protographs”, 2011 IEEE Information Theory Workshop (2011) DOI
[10]
D. Divsalar, S. Dolinar, J. Thorpe, and C. Jones, “Constructing LDPC codes from simple loop-free encoding modules”, IEEE International Conference on Communications, 2005. ICC 2005. 2005 DOI
[11]
A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A Generalized Algebraic Approach to Optimizing SC-LDPC Codes”, (2017) arXiv:1710.03619
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: protograph_ldpc

Cite as:
“Protograph LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/protograph_ldpc
BibTeX:
@incollection{eczoo_protograph_ldpc, title={Protograph LDPC code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/protograph_ldpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/protograph_ldpc

Cite as:

“Protograph LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/protograph_ldpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/tanner/irregular/protograph_ldpc.yml.