Multi-edge LDPC code[1]
Description
Irregular LDPC code whose construction generalizes those of the original examples of irregular LDPC as well as RA codes.Primary Hierarchy
Low-density parity-check (LDPC) code\(q\)-ary LDPC Tanner Linear \(q\)-ary LRC Distributed-storage ECC
Parents
Multi-edge LDPC code
Children
The multi-edge code construction generalizes generalizes several of the original examples of irregular LDPC codes. Irregular LDPC codes can be formulated as multi-edge LDPC codes [1; Sec. XI].
LDPC codes based on protographs can be formulated as multi-edge LDPC codes [5].
HA-LDPC codes can be formulated as multi-edge LDPC codes [6].
MN-LDPC codes can be formulated as multi-edge LDPC codes [6].
References
- [1]
- Richardson, Tom, and Rüdiger Urbanke. "Multi-edge type LDPC codes." Workshop honoring Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena, California. 2002.
- [2]
- M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, “Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography”, npj Quantum Information 4, (2018) arXiv:1702.07740 DOI
- [3]
- H. Mani, T. Gehring, P. Grabenweger, B. Ömer, C. Pacher, and U. L. Andersen, “Multiedge-type low-density parity-check codes for continuous-variable quantum key distribution”, Physical Review A 103, (2021) DOI
- [4]
- A. A. E. Hajomer, I. Derkach, R. Filip, U. L. Andersen, V. C. Usenko, and T. Gehring, “Continuous-variable quantum passive optical network”, Light: Science & Applications 13, (2024) arXiv:2402.16044 DOI
- [5]
- D. G. M. Mitchell, R. Smarandache, and D. J. Costello, “Quasi-cyclic LDPC codes based on pre-lifted protographs”, 2011 IEEE Information Theory Workshop (2011) DOI
- [6]
- K. KASAI and K. SAKANIWA, “Spatially-Coupled MacKay-Neal Codes and Hsu-Anastasopoulos Codes”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, 2161 (2011) arXiv:1102.4612 DOI
Page edit log
- Victor V. Albert (2023-05-04) — most recent
Cite as:
“Multi-edge LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/multi_edge_ldpc