Hsu-Anastasopoulos LDPC (HA-LDPC) code[1]
Description
A regular LDPC code obtained from a concatenation of a certain random regular LDPC code and a certain random LDGM code.
Rate
Codes can achieve capacity on the BEC channel under BP decoding [1] as well as the capacity of memoryless binary-input symmetric-output channels under MAP decoding [2]. HA-LDPC codes can achieve the GV bound with asymptotically high probability [1].
Parents
- Regular LDPC code
- Multi-edge LDPC code — HA-LDPC codes can be formulated as multi-edge LDPC codes [2].
Cousins
- Low-density generator-matrix (LDGM) code — HA-LDPC codes are a concatenation of an LDPC and an LDGM code.
- Concatenated code — HA-LDPC codes are a concatenation of an LDPC and an LDGM code.
References
- [1]
- C.-H. Hsu and A. Anastasopoulos, “Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels”, (2005) arXiv:cs/0509062
- [2]
- K. KASAI and K. SAKANIWA, “Spatially-Coupled MacKay-Neal Codes and Hsu-Anastasopoulos Codes”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, 2161 (2011) arXiv:1102.4612 DOI
Page edit log
- Victor V. Albert (2023-05-04) — most recent
Cite as:
“Hsu-Anastasopoulos LDPC (HA-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/ha_ldpc