Hsu-Anastasopoulos LDPC (HA-LDPC) code[1] 

Description

A regular LDPC code obtained from a concatenation of a certain random regular LDPC code and a certain random LDGM code. Using rate-one LDGM codes eliminates high-weight codewords while admitting an amount of low-weight codewords that asymptotically vanishes, allowing code families to achieve the GV bound with high probability.

Rate

HA-LDPC codes achieve capacity on the BEC channel under BP decoding [1] and the memoryless binary-input output-symmetric (MBIOS) channels under ML decoding [1] and under MAP decoding [2]. They also achieve the GV bound with asymptotically high probability when the concatenation is with a rate-one LDGM code [1].

Parents

Cousins

References

[1]
C.-H. Hsu and A. Anastasopoulos, “Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels”, (2005) arXiv:cs/0509062
[2]
K. KASAI and K. SAKANIWA, “Spatially-Coupled MacKay-Neal Codes and Hsu-Anastasopoulos Codes”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, 2161 (2011) arXiv:1102.4612 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: ha_ldpc

Cite as:
“Hsu-Anastasopoulos LDPC (HA-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/ha_ldpc
BibTeX:
@incollection{eczoo_ha_ldpc, title={Hsu-Anastasopoulos LDPC (HA-LDPC) code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/ha_ldpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/ha_ldpc

Cite as:

“Hsu-Anastasopoulos LDPC (HA-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/ha_ldpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/tanner/regular_tanner/regular_ldpc/ha_ldpc.yml.