Description
An LDPC code whose parity-check matrix has a fixed number of entries for each row or column.
Parents
- Low-density parity-check (LDPC) code
- Regular binary Tanner code — Regular LDPC codes are regular binary Tanner codes defined on sparse graphs whose constraint nodes represent parity-check codes.
Children
- Cycle LDPC code — Cycle LDPC codes form a class of regular QC LDPC codes [1].
- Expander code — Expander codes yield an explicit (i.e., non-random) asymptotically good LDPC code family.
- Gallager (GL) code — GL codes are the first LDPC codes.
- Hsu-Anastasopoulos LDPC (HA-LDPC) code
- Lazebnik-Ustimenko (LU) code
- MacKay-Neal LDPC (MN-LDPC) code — MN-LDPC codes re-invigorated the study of LDPC codes about 30 years after their discovery.
- Finite-geometry LDPC (FG-LDPC) code
References
- [1]
- R. M. Tanner et al., “LDPC Block and Convolutional Codes Based on Circulant Matrices”, IEEE Transactions on Information Theory 50, 2966 (2004) DOI
Page edit log
- Victor V. Albert (2023-05-04) — most recent
Cite as:
“Regular LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/regular_ldpc