Quasi-cyclic LDPC (QC-LDPC) code[28][1; Appx. C] 

Description

LDPC code that can be put into quasi-cyclic form. Its parity check matrix can be put into the form of a block matrix consisting of either circulant permutation sub-matrices or the zero sub-matrix. Such codes are often constructed by lifting certain protographs into such block matrices [9]. Their simple structure makes them useful for several wireless communication standards.

Protection

Minimum-distance upper bounds exist [10,11].

Realizations

5G NR cellular communication for the traffic channel [12,13].Wireless communication: WiMAX (IEEE 802.16e) [1416], WiFi 4 (IEEE 802.11n) [17], and WPAN (IEEE 802.15.3c) [18].

Parents

Children

Cousins

References

[1]
R. Gallagher, Low-density parity check codes. 1963. PhD thesis, MIT Cambridge, MA.
[2]
H. Jin, T. Richardson, V. Novichkov, "Error Correction of Algebraic Block Codes". U.S. Patent, Number US8751902B2 2002
[3]
A. Yahya et al., “A new Quasi-Cyclic low density parity check codes”, 2009 IEEE Symposium on Industrial Electronics & Applications (2009) DOI
[4]
Tanner, R. Michael, Deepak Sridhara, and Tom Fuja. "A class of group-structured LDPC codes." Proc. ISTA. 2001.
[5]
B. Vasic, “Combinatorial constructions of low-density parity check codes for iterative decoding”, Proceedings IEEE International Symposium on Information Theory, DOI
[6]
I. Djurdjevic et al., “A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols”, IEEE Communications Letters 7, 317 (2003) DOI
[7]
T. Okamura, “Designing LDPC codes using cyclic shifts”, IEEE International Symposium on Information Theory, 2003. Proceedings. (2003) DOI
[8]
M. P. C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices”, IEEE Transactions on Information Theory 50, 1788 (2004) DOI
[9]
I. E. Bocharova et al., “Searching for Voltage Graph-Based LDPC Tailbiting Codes With Large Girth”, IEEE Transactions on Information Theory 58, 2265 (2012) arXiv:1108.0840 DOI
[10]
D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager Codes for Short Block Length and High Rate Applications”, Codes, Systems, and Graphical Models 113 (2001) DOI
[11]
R. Smarandache and P. O. Vontobel, “Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds”, IEEE Transactions on Information Theory 58, 585 (2012) DOI
[12]
T. Richardson and S. Kudekar, “Design of Low-Density Parity Check Codes for 5G New Radio”, IEEE Communications Magazine 56, 28 (2018) DOI
[13]
M. V. Patil, S. Pawar, and Z. Saquib, “Coding Techniques for 5G Networks: A Review”, 2020 3rd International Conference on Communication System, Computing and IT Applications (CSCITA) (2020) DOI
[14]
LDPC coding for OFDMA PHY. 802.16REVe Sponsor Ballot Recirculation comment, July 2004. IEEE C802.16e04/141r2
[15]
T. Brack et al., “A Synthesizable IP Core for WIMAX 802.16E LDPC Code Decoding”, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (2006) DOI
[16]
G. Falcão et al., “High coded data rate and multicodeword WiMAX LDPC decoding on Cell/BE”, Electronics Letters 44, 1415 (2008) DOI
[17]
Xiao Han, Kai Niu, and Zhiqiang He, “Implementation of IEEE 802.11n LDPC codes based on general purpose processors”, 2013 15th IEEE International Conference on Communication Technology (2013) DOI
[18]
W. Zhang et al., “A full layer parallel QC-LDPC decoder for WiMAX and Wi-Fi”, 2015 IEEE 11th International Conference on ASIC (ASICON) (2015) DOI
[19]
R. M. Tanner et al., “LDPC Block and Convolutional Codes Based on Circulant Matrices”, IEEE Transactions on Information Theory 50, 2966 (2004) DOI
[20]
R. M. Tanner et al., “LDPC Block and Convolutional Codes Based on Circulant Matrices”, IEEE Transactions on Information Theory 50, 2966 (2004) DOI
[21]
M. R. Tanner, "On quasi-cyclic repeat-accumulate codes." PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING. Vol. 37. The University; 1998, 1999.
[22]
Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries: a rediscovery and new results”, IEEE Transactions on Information Theory 47, 2711 (2001) DOI
[23]
Heng Tang et al., “Codes on finite geometries”, IEEE Transactions on Information Theory 51, 572 (2005) DOI
[24]
Latin Squares and Their Applications (Elsevier, 2015) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qc_ldpc

Cite as:
“Quasi-cyclic LDPC (QC-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qc_ldpc
BibTeX:
@incollection{eczoo_qc_ldpc, title={Quasi-cyclic LDPC (QC-LDPC) code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qc_ldpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qc_ldpc

Cite as:

“Quasi-cyclic LDPC (QC-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qc_ldpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/tanner/qc/qc_ldpc.yml.