[Jump to code hierarchy]

La-cross code[1]

Description

Code constructed using a hypergraph product of two copies of a cyclic LDPC code. The construction uses cyclic LDPC codes with generating polynomials \(1+x+x^k\) for some \(k\). Using a length-\(n\) seed code yields an \([[2n^2,2k^2]]\) family for periodic boundary conditions and an \([[(n-k)^2+n^2,k^2]]\) family for open boundary conditions.

Cousins

  • Quasi-cyclic LDPC (QC-LDPC) code— La-cross codes are constructed using a hypergraph product a cyclic LDPC code with itself.
  • Long-range enhanced surface code (LRESC)— La-cross codes yield LRESCs for \(k=2\). La-cross codes have a number of long-range stabilizers that scales linearly with code size, while the number of LRESC long-range stabilizers can be tuned to scale between the square-root of the size and linearly in the size.
  • Kitaev surface code— La-cross codes at \(k=1\) yield the toric (planar surface) code and periodic (open) boundary conditions.

References

[1]
L. Pecorari, S. Jandura, G. K. Brennen, and G. Pupillo, “High-rate quantum LDPC codes for long-range-connected neutral atom registers”, (2024) arXiv:2404.13010
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: lacross

Cite as:
“La-cross code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/lacross
BibTeX:
@incollection{eczoo_lacross, title={La-cross code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/lacross} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/lacross

Cite as:

“La-cross code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/lacross

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/qldpc/concatenated/lacross.yml.