## Description

A family of Abelian topological CSS stabilizer codes whose generators are few-body \(X\)-type and \(Z\)-type Pauli strings associated to the stars and plaquettes, respectively, of a cellulation of a two-dimensional surface (with a qubit located at each edge of the cellulation). Codewords correspond to ground states of the surface code Hamiltonian, and error operators create or annihilate pairs of anyonic charges or vortices.

The construction on closed surfaces (surfaces with boundaries) is called the toric code (planar code [4,5]). There are two types of stabilizers one can put on edges, yielding open (a.k.a. rough) and closed (a.k.a. smooth) boundaries. A mixed boundary consists of an interleaving of the two stabilizer types [6].

## Protection

## Rate

## Encoding

## Transversal Gates

## Gates

## Decoding

## Fault Tolerance

## Threshold

## Realizations

## Notes

## Parents

- Twist-defect surface code — Twist-defect surface codes reduce to surface codes when there are no defects.
- Clifford-deformed surface code (CDSC) — CDSC codes are deformations of the surface code via constant-depth Clifford circuits that may not be CSS.
- Homological code — The surface-code CSS stabilizer generator prescription is extendable to higher-dimensional manifolds.
- Lift-connected surface (LCS) code — LCS codes consist of sparsely interconnected stacks of surface codes.
- Modular-qudit surface code — The modular-qudit surface code for \(q=2\) reduces to the surface code.
- Galois-qudit topological code — The Galois-qudit surface code for \(q=2\) reduces to the surface code.

## Children

- Rotated surface code — The lattice of the rotated surface code can be obtained by taking the medial graph of the surface code lattice (treated as a graph) and applying a similar procedure to construct the check operators [6,118][119; Fig. 8]. Applying the quantum Tanner transformation to the surface code yields the rotated surface code [120,121].
- Toric code — The toric code is the surface code on a 2D torus.
- 2D hyperbolic surface code

## Cousins

- Layer code — Layer codes are combinations of constant-rate QLDPC codes with surface codes built using lattice surgery.
- Long-range enhanced surface code (LRESC) — LRESCs reduce to planar surface codes when a trivial LDPC code is used in the hypergraph product.
- La-cross code — La-cross codes at \(k=1\) yield the toric (planar surface) code and periodic (open) boundary conditions.
- Majorana stabilizer code — The Majorana mapping can be used to construct efficient algorithms for simulating rounds of error correction for the surface code [122].
- Quantum-double code — A quantum-double model with \(G=\mathbb{Z}_2\) is the surface code. Non-stabilizer surface-code states can be prepared by augmenting the surface code with a quantum double model [31].
- Hamiltonian-based code — While codewords of the surface code form ground states of the code's stabilizer Hamiltonian, they can also be ground states of other gapless Hamiltonians [123].
- Asymmetric quantum code — The surface code on a hexagonal lattice is an asymmetric CSS code [124].
- 2D lattice stabilizer code — Translation-invariant 2D qubit lattice stabilizer codes are equivalent to several copies of the Kitaev surface code via a local constant-depth Clifford circuit [125–127]. There exists an algorithm with which one can determine the fusion and braiding rules of a 2D translationally invariant qubit code, and decompose the given code into copies of the surface code [128].
- Dynamical automorphism (DA) code — One of the instantaneous stabilizer codes of the 2D DA color code are stacks of surface codes
- Floquet color code — The ISG of the Floquet color code is the stabilizer group of one of nine realizations of the \(\mathbb{Z}_2\) 2D surface code.
- X-cube Floquet code — The ISG of the X-cube Floquet code can be that of the X-cube model code or that of several decoupled surface codes.
- Honeycomb Floquet code — Measurement of each check operator of the honeycomb Floquet code involves two qubits and projects the state of the two qubits to a two-dimensional subspace, which we regard as an effective qubit. These effective qubits form a surface code on a hexagonal superlattice. Electric and magnetic operators on the embedded surface code correspond to outer logical operators of the Floquet code. In fact, outer logical operators transition back and forth from magnetic to electric surface code operators under the measurement dynamics. Inspired by the honeycomb Floquet code, various two-body measurement schemes have been designed [97–99].
- Spacetime circuit code — Stabilizer generators of a spacetime code are called detectors in Refs. [129,130].
- Majorana surface code — The Majorana surface code is a Majorana stabilizer analogue of the surface code.
- Neural network code — Reinforcement learners can be used to optimize the geometry of the surface code to be more suited to a noise channel [131].
- Raussendorf-Bravyi-Harrington (RBH) cluster-state code — The RBH state encodes the temporal gate operations on the surface code into a third spatial dimension [104,132]. In addition, one of possible 2D boundaries of the RBH code is effectively a 2D toric code.
- Bivariate bicycle (BB) code — Bivariate bicycle codes are on par with the surface code in terms of threshold, but admit a much higher ancilla-added encoding rate at the expense of having non-geometrically local weight-six check operators.
- 2D color code — The 2D color code is equivalent to multiple decoupled copies of the 2D surface code via a local constant-depth Clifford circuit [133–135]. Conversely, the 2D color code can condense to form the 2D surface code in nine different ways, i.e., by adding two body hopping terms along one of its three triangular directions to the stabilizer group and then taking the center of the resulting nonabelian group [136]. Both the surface and 2D color codes can be constructed from two distinct types of lattices, namely, 4-valent and 3-valent 3-colorable lattices, respectively [137].
- Generalized five-squares code — Decoding of five-squares codes leads to a mapping of these codes to two copies of the surface code [138,139].
- Heavy-hexagon code — Surface code stabilizers are used to measure the Z-type stabilizers of the code. There are various ways to embed the surface code into the heavy-hex lattice [140].
- Kitaev honeycomb code — The Kitaev honeycomb model can be formulated as a qubit subsystem stabilizer code. This code can be obtained from the square-lattice surface code by gauging out the anyon \(em\) [141; Sec. 7.3]. During this process, the square lattice is effectively expanded to a hexagonal lattice [141; Fig. 12].
- Three-fermion (3F) subsystem code — One version of the 3F subsystem code can be obtained from two copies of the square-lattice surface code by gauging out the anyons \(e_1m_1e_2\) and \(e_2m_2\) [141; Sec. 7.4].
- Subsystem surface code
- Fracton stabilizer code — Foliated type-I fracton phase codes can be grown by foliation, i.e., stacking copies of the 2D surface code; see [142; Eq. (D32)].

## References

- [1]
- A. Y. Kitaev, “Quantum computations: algorithms and error correction”, Russian Mathematical Surveys 52, 1191 (1997) DOI
- [2]
- A. Yu. Kitaev, “Quantum Error Correction with Imperfect Gates”, Quantum Communication, Computing, and Measurement 181 (1997) DOI
- [3]
- A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons”, Annals of Physics 303, 2 (2003) arXiv:quant-ph/9707021 DOI
- [4]
- S. B. Bravyi and A. Yu. Kitaev, “Quantum codes on a lattice with boundary”, (1998) arXiv:quant-ph/9811052
- [5]
- M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum codes”, (1998) arXiv:quant-ph/9810055
- [6]
- N. Delfosse, P. Iyer, and D. Poulin, “Generalized surface codes and packing of logical qubits”, (2016) arXiv:1606.07116
- [7]
- G. Rajpoot, K. Kumari, and S. R. Jain, “Quantum error correction beyond the toric code: dynamical systems meet encoding”, The European Physical Journal Special Topics (2023) arXiv:2307.04418 DOI
- [8]
- E. Dennis et al., “Topological quantum memory”, Journal of Mathematical Physics 43, 4452 (2002) arXiv:quant-ph/0110143 DOI
- [9]
- M. Aguado and G. Vidal, “Entanglement Renormalization and Topological Order”, Physical Review Letters 100, (2008) arXiv:0712.0348 DOI
- [10]
- P. Mazurek et al., “Long-distance quantum communication over noisy networks without long-time quantum memory”, Physical Review A 90, (2014) arXiv:1202.1016 DOI
- [11]
- R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-tolerance in cluster state quantum computation”, New Journal of Physics 9, 199 (2007) arXiv:quant-ph/0703143 DOI
- [12]
- B. J. Brown et al., “Generating topological order from a two-dimensional cluster state using a duality mapping”, New Journal of Physics 13, 065010 (2011) arXiv:1105.2111 DOI
- [13]
- O. Higgott et al., “Optimal local unitary encoding circuits for the surface code”, Quantum 5, 517 (2021) arXiv:2002.00362 DOI
- [14]
- Y.-J. Liu et al., “Methods for Simulating String-Net States and Anyons on a Digital Quantum Computer”, PRX Quantum 3, (2022) arXiv:2110.02020 DOI
- [15]
- R. König, B. W. Reichardt, and G. Vidal, “Exact entanglement renormalization for string-net models”, Physical Review B 79, (2009) arXiv:0806.4583 DOI
- [16]
- J. Joo et al., “Generating and verifying graph states for fault-tolerant topological measurement-based quantum computing in two-dimensional optical lattices”, Physical Review A 88, (2013) arXiv:1207.0253 DOI
- [17]
- S. Bravyi, M. B. Hastings, and F. Verstraete, “Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order”, Physical Review Letters 97, (2006) arXiv:quant-ph/0603121 DOI
- [18]
- D. Aharonov and Y. Touati, “Quantum Circuit Depth Lower Bounds For Homological Codes”, (2018) arXiv:1810.03912
- [19]
- J. Łodyga et al., “Simple scheme for encoding and decoding a qubit in unknown state for various topological codes”, Scientific Reports 5, (2015) arXiv:1404.2495 DOI
- [20]
- A. Tikku and I. H. Kim, “Circuit depth versus energy in topologically ordered systems”, (2022) arXiv:2210.06796
- [21]
- S. Bravyi et al., “Quantum advantage with noisy shallow circuits”, Nature Physics 16, 1040 (2020) arXiv:1904.01502 DOI
- [22]
- J. E. Moussa, “Transversal Clifford gates on folded surface codes”, Physical Review A 94, (2016) arXiv:1603.02286 DOI
- [23]
- D. Horsman et al., “Surface code quantum computing by lattice surgery”, New Journal of Physics 14, 123011 (2012) arXiv:1111.4022 DOI
- [24]
- D. Litinski and F. von Oppen, “Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes”, Quantum 2, 62 (2018) arXiv:1709.02318 DOI
- [25]
- D. Litinski, “A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery”, Quantum 3, 128 (2019) arXiv:1808.02892 DOI
- [26]
- C. Chamberland and E. T. Campbell, “Universal Quantum Computing with Twist-Free and Temporally Encoded Lattice Surgery”, PRX Quantum 3, (2022) arXiv:2109.02746 DOI
- [27]
- D. Litinski, “Magic State Distillation: Not as Costly as You Think”, Quantum 3, 205 (2019) arXiv:1905.06903 DOI
- [28]
- N. P. Breuckmann et al., “Hyperbolic and semi-hyperbolic surface codes for quantum storage”, Quantum Science and Technology 2, 035007 (2017) arXiv:1703.00590 DOI
- [29]
- G. Zhu, A. Lavasani, and M. Barkeshli, “Instantaneous braids and Dehn twists in topologically ordered states”, Physical Review B 102, (2020) arXiv:1806.06078 DOI
- [30]
- B. J. Brown, “A fault-tolerant non-Clifford gate for the surface code in two dimensions”, Science Advances 6, (2020) arXiv:1903.11634 DOI
- [31]
- K. Laubscher, D. Loss, and J. R. Wootton, “Universal quantum computation in the surface code using non-Abelian islands”, Physical Review A 100, (2019) arXiv:1811.06738 DOI
- [32]
- B. Coecke and R. Duncan, “Interacting Quantum Observables”, Automata, Languages and Programming 298 DOI
- [33]
- B. Coecke and R. Duncan, “Interacting quantum observables: categorical algebra and diagrammatics”, New Journal of Physics 13, 043016 (2011) arXiv:0906.4725 DOI
- [34]
- N. de Beaudrap and D. Horsman, “The ZX calculus is a language for surface code lattice surgery”, Quantum 4, 218 (2020) arXiv:1704.08670 DOI
- [35]
- C. Gidney and A. G. Fowler, “Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation”, Quantum 3, 135 (2019) arXiv:1812.01238 DOI
- [36]
- C. Gidney and A. G. Fowler, “Flexible layout of surface code computations using AutoCCZ states”, (2019) arXiv:1905.08916
- [37]
- J. Gavriel et al., “Transversal Injection: A method for direct encoding of ancilla states for non-Clifford gates using stabiliser codes”, (2022) arXiv:2211.10046
- [38]
- Andrew Landahl, private communication, 2023
- [39]
- A. G. Fowler, “Minimum weight perfect matching of fault-tolerant topological quantum error correction in average \(O(1)\) parallel time”, (2014) arXiv:1307.1740
- [40]
- J. Edmonds, “Paths, Trees, and Flowers”, Canadian Journal of Mathematics 17, 449 (1965) DOI
- [41]
- J. Edmonds, “Maximum matching and a polyhedron with 0,1-vertices”, Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics 69B, 125 (1965) DOI
- [42]
- F. Barahona et al., “Morphology of ground states of two-dimensional frustration model”, Journal of Physics A: Mathematical and General 15, 673 (1982) DOI
- [43]
- A. Fischer and A. Miyake, “Hardness results for decoding the surface code with Pauli noise”, (2024) arXiv:2309.10331
- [44]
- S. Bravyi, M. Suchara, and A. Vargo, “Efficient algorithms for maximum likelihood decoding in the surface code”, Physical Review A 90, (2014) arXiv:1405.4883 DOI
- [45]
- N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algorithm for topological codes”, Quantum 5, 595 (2021) arXiv:1709.06218 DOI
- [46]
- B. A. Galler and M. J. Fisher, “An improved equivalence algorithm”, Communications of the ACM 7, 301 (1964) DOI
- [47]
- J. E. Hopcroft and J. D. Ullman, “Set Merging Algorithms”, SIAM Journal on Computing 2, 294 (1973) DOI
- [48]
- R. E. Tarjan and J. van Leeuwen, “Worst-case Analysis of Set Union Algorithms”, Journal of the ACM 31, 245 (1984) DOI
- [49]
- C. A. Pattison et al., “Improved quantum error correction using soft information”, (2021) arXiv:2107.13589
- [50]
- O. Higgott et al., “Improved decoding of circuit noise and fragile boundaries of tailored surface codes”, (2023) arXiv:2203.04948
- [51]
- T. Chan and S. C. Benjamin, “Actis: A Strictly Local Union–Find Decoder”, Quantum 7, 1183 (2023) arXiv:2305.18534 DOI
- [52]
- A. G. Fowler, “Optimal complexity correction of correlated errors in the surface code”, (2013) arXiv:1310.0863
- [53]
- A. Paler and A. G. Fowler, “Pipelined correlated minimum weight perfect matching of the surface code”, Quantum 7, 1205 (2023) arXiv:2205.09828 DOI
- [54]
- X. Xu et al., “High-Threshold Code for Modular Hardware With Asymmetric Noise”, Physical Review Applied 12, (2019) arXiv:1812.01505 DOI
- [55]
- Y. Wu and L. Zhong, “Fusion Blossom: Fast MWPM Decoders for QEC”, (2023) arXiv:2305.08307
- [56]
- D. Forlivesi, L. Valentini, and M. Chiani, “Spanning Tree Matching Decoder for Quantum Surface Codes”, (2024) arXiv:2405.01151
- [57]
- N. Shutty, M. Newman, and B. Villalonga, “Efficient near-optimal decoding of the surface code through ensembling”, (2024) arXiv:2401.12434
- [58]
- G. Duclos-Cianci and D. Poulin, “Fast Decoders for Topological Quantum Codes”, Physical Review Letters 104, (2010) arXiv:0911.0581 DOI
- [59]
- G. Duclos-Cianci and D. Poulin, “Fault-Tolerant Renormalization Group Decoder for Abelian Topological Codes”, (2013) arXiv:1304.6100
- [60]
- F. H. E. Watson, H. Anwar, and D. E. Browne, “Fast fault-tolerant decoder for qubit and qudit surface codes”, Physical Review A 92, (2015) arXiv:1411.3028 DOI
- [61]
- J. Wootton, “A Simple Decoder for Topological Codes”, Entropy 17, 1946 (2015) arXiv:1310.2393 DOI
- [62]
- N. Delfosse and G. Zémor, “Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel”, Physical Review Research 2, (2020) arXiv:1703.01517 DOI
- [63]
- A. Hutter, J. R. Wootton, and D. Loss, “Efficient Markov chain Monte Carlo algorithm for the surface code”, Physical Review A 89, (2014) arXiv:1302.2669 DOI
- [64]
- J. W. Harrington, Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Codes, California Institute of Technology, 2004 DOI
- [65]
- M. Herold et al., “Cellular-automaton decoders for topological quantum memories”, npj Quantum Information 1, (2015) arXiv:1406.2338 DOI
- [66]
- M. Herold et al., “Cellular automaton decoders of topological quantum memories in the fault tolerant setting”, New Journal of Physics 19, 063012 (2017) arXiv:1511.05579 DOI
- [67]
- C.-E. Bardyn and T. Karzig, “Exponential lifetime improvement in topological quantum memories”, Physical Review B 94, (2016) arXiv:1512.04528 DOI
- [68]
- G. Torlai and R. G. Melko, “Neural Decoder for Topological Codes”, Physical Review Letters 119, (2017) arXiv:1610.04238 DOI
- [69]
- C. Chamberland and P. Ronagh, “Deep neural decoders for near term fault-tolerant experiments”, Quantum Science and Technology 3, 044002 (2018) arXiv:1802.06441 DOI
- [70]
- Y. Ueno et al., “NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for Surface Codes”, (2022) arXiv:2208.05758
- [71]
- R. Sweke et al., “Reinforcement learning decoders for fault-tolerant quantum computation”, Machine Learning: Science and Technology 2, 025005 (2020) arXiv:1810.07207 DOI
- [72]
- E. S. Matekole et al., “Decoding surface codes with deep reinforcement learning and probabilistic policy reuse”, (2022) arXiv:2212.11890
- [73]
- H. Wang et al., “Transformer-QEC: Quantum Error Correction Code Decoding with Transferable Transformers”, (2023) arXiv:2311.16082
- [74]
- P. Das, A. Locharla, and C. Jones, “LILLIPUT: A Lightweight Low-Latency Lookup-Table Based Decoder for Near-term Quantum Error Correction”, (2021) arXiv:2108.06569
- [75]
- N. Delfosse, “Hierarchical decoding to reduce hardware requirements for quantum computing”, (2020) arXiv:2001.11427
- [76]
- S. C. Smith, B. J. Brown, and S. D. Bartlett, “Local Predecoder to Reduce the Bandwidth and Latency of Quantum Error Correction”, Physical Review Applied 19, (2023) arXiv:2208.04660 DOI
- [77]
- G. S. Ravi et al., “Better Than Worst-Case Decoding for Quantum Error Correction”, (2022) arXiv:2208.08547
- [78]
- X. Tan et al., “Scalable surface code decoders with parallelization in time”, (2022) arXiv:2209.09219
- [79]
- L. Skoric et al., “Parallel window decoding enables scalable fault tolerant quantum computation”, (2023) arXiv:2209.08552
- [80]
- J. Old and M. Rispler, “Generalized Belief Propagation Algorithms for Decoding of Surface Codes”, Quantum 7, 1037 (2023) arXiv:2212.03214 DOI
- [81]
- J. S. Yedidia, W. T. Freeman, and Y. Weiss, Generalized belief propagation, in NIPS, Vol. 13 (2000) pp. 689–695.
- [82]
- K.-Y. Kuo and C.-Y. Lai, “Comparison of 2D topological codes and their decoding performances”, 2022 IEEE International Symposium on Information Theory (ISIT) (2022) arXiv:2202.06612 DOI
- [83]
- K.-Y. Kuo and C.-Y. Lai, “Exploiting degeneracy in belief propagation decoding of quantum codes”, npj Quantum Information 8, (2022) arXiv:2104.13659 DOI
- [84]
- A. Kaufmann and I. Arad, “A blockBP decoder for the surface code”, (2024) arXiv:2402.04834
- [85]
- H. D. Pfister et al., “Belief Propagation for Classical and Quantum Systems: Overview and Recent Results”, IEEE BITS the Information Theory Magazine 1 (2023) DOI
- [86]
- A. Benhemou et al., “Minimising surface-code failures using a color-code decoder”, (2023) arXiv:2306.16476
- [87]
- M. Pacenti et al., “Progressive-Proximity Bit-Flipping for Decoding Surface Codes”, (2024) arXiv:2402.15924
- [88]
- T. R. Scruby et al., “Numerical Implementation of Just-In-Time Decoding in Novel Lattice Slices Through the Three-Dimensional Surface Code”, Quantum 6, 721 (2022) arXiv:2012.08536 DOI
- [89]
- C. Chamberland and M. E. Beverland, “Flag fault-tolerant error correction with arbitrary distance codes”, Quantum 2, 53 (2018) arXiv:1708.02246 DOI
- [90]
- S. Huang, T. Jochym-O’Connor, and T. J. Yoder, “Homomorphic Logical Measurements”, (2022) arXiv:2211.03625
- [91]
- D. Litinski and N. Nickerson, “Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections”, (2022) arXiv:2211.15465
- [92]
- H. Bombín et al., “Fault-Tolerant Postselection for Low-Overhead Magic State Preparation”, PRX Quantum 5, (2024) arXiv:2212.00813 DOI
- [93]
- H. Bombin et al., “Unifying flavors of fault tolerance with the ZX calculus”, (2023) arXiv:2303.08829
- [94]
- S. H. Choe and R. Koenig, “Long-range data transmission in a fault-tolerant quantum bus architecture”, (2022) arXiv:2209.09774
- [95]
- A. G. Fowler et al., “Surface codes: Towards practical large-scale quantum computation”, Physical Review A 86, (2012) arXiv:1208.0928 DOI
- [96]
- M. McEwen, D. Bacon, and C. Gidney, “Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics”, Quantum 7, 1172 (2023) arXiv:2302.02192 DOI
- [97]
- R. Chao et al., “Optimization of the surface code design for Majorana-based qubits”, Quantum 4, 352 (2020) arXiv:2007.00307 DOI
- [98]
- C. Gidney, “A Pair Measurement Surface Code on Pentagons”, Quantum 7, 1156 (2023) arXiv:2206.12780 DOI
- [99]
- L. Grans-Samuelsson et al., “Improved Pairwise Measurement-Based Surface Code”, (2023) arXiv:2310.12981
- [100]
- D. S. Wang et al., “Threshold error rates for the toric and surface codes”, (2009) arXiv:0905.0531
- [101]
- B. Heim, K. M. Svore, and M. B. Hastings, “Optimal Circuit-Level Decoding for Surface Codes”, (2016) arXiv:1609.06373
- [102]
- A. G. Fowler, “Proof of Finite Surface Code Threshold for Matching”, Physical Review Letters 109, (2012) arXiv:1206.0800 DOI
- [103]
- C. Wang, J. Harrington, and J. Preskill, “Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory”, Annals of Physics 303, 31 (2003) arXiv:quant-ph/0207088 DOI
- [104]
- R. Raussendorf and J. Harrington, “Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions”, Physical Review Letters 98, (2007) arXiv:quant-ph/0610082 DOI
- [105]
- A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quantum computation on the surface code”, Physical Review A 80, (2009) arXiv:0803.0272 DOI
- [106]
- M. Ohzeki, “Locations of multicritical points for spin glasses on regular lattices”, Physical Review E 79, (2009) arXiv:0811.0464 DOI
- [107]
- D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, “Surface code quantum computing with error rates over 1%”, Physical Review A 83, (2011) arXiv:1009.3686 DOI
- [108]
- A. M. Stephens, “Fault-tolerant thresholds for quantum error correction with the surface code”, Physical Review A 89, (2014) arXiv:1311.5003 DOI
- [109]
- B. Criger and B. Terhal, “Noise thresholds for the [4,2,2]-concatenated toric code”, Quantum Information and Computation 16, 1261 (2016) arXiv:1604.04062 DOI
- [110]
- T. Ohno et al., “Phase structure of the random-plaquette gauge model: accuracy threshold for a toric quantum memory”, Nuclear Physics B 697, 462 (2004) arXiv:quant-ph/0401101 DOI
- [111]
- D. Pataki et al., “Coherent errors in stabilizer codes caused by quasistatic phase damping”, (2024) arXiv:2401.04530
- [112]
- A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, “A comparative code study for quantum fault-tolerance”, (2009) arXiv:0711.1556
- [113]
- K. J. Satzinger et al., “Realizing topologically ordered states on a quantum processor”, Science 374, 1237 (2021) arXiv:2104.01180 DOI
- [114]
- G. Semeghini et al., “Probing topological spin liquids on a programmable quantum simulator”, Science 374, 1242 (2021) arXiv:2104.04119 DOI
- [115]
- A. Goswami, M. Mhalla, and V. Savin, “Fault-Tolerant Preparation of Quantum Polar Codes Encoding One Logical Qubit”, (2023) arXiv:2209.06673
- [116]
- A. Wu et al., “Mapping Surface Code to Superconducting Quantum Processors”, (2021) arXiv:2111.13729
- [117]
- A. deMarti iOlius et al., “Decoding algorithms for surface codes”, (2024) arXiv:2307.14989
- [118]
- H. Bombin and M. A. Martin-Delgado, “Optimal resources for topological two-dimensional stabilizer codes: Comparative study”, Physical Review A 76, (2007) arXiv:quant-ph/0703272 DOI
- [119]
- R. Sarkar and T. J. Yoder, “A graph-based formalism for surface codes and twists”, (2023) arXiv:2101.09349
- [120]
- Nikolas P. Breuckmann, private communication, 2022
- [121]
- Anthony Leverrier, Mapping the toric code to the rotated toric code, 2022.
- [122]
- S. Bravyi et al., “Correcting coherent errors with surface codes”, npj Quantum Information 4, (2018) arXiv:1710.02270 DOI
- [123]
- C. Fernández-González et al., “Gapless Hamiltonians for the Toric Code Using the Projected Entangled Pair State Formalism”, Physical Review Letters 109, (2012) arXiv:1111.5817 DOI
- [124]
- C. D. de Albuquerque et al., “Euclidean and Hyperbolic Asymmetric Topological Quantum Codes”, (2021) arXiv:2105.01144
- [125]
- H. Bombin, G. Duclos-Cianci, and D. Poulin, “Universal topological phase of two-dimensional stabilizer codes”, New Journal of Physics 14, 073048 (2012) arXiv:1103.4606 DOI
- [126]
- H. Bombín, “Structure of 2D Topological Stabilizer Codes”, Communications in Mathematical Physics 327, 387 (2014) arXiv:1107.2707 DOI
- [127]
- J. Haah, “Algebraic Methods for Quantum Codes on Lattices”, Revista Colombiana de Matemáticas 50, 299 (2017) arXiv:1607.01387 DOI
- [128]
- Z. Liang et al., “Extracting topological orders of generalized Pauli stabilizer codes in two dimensions”, (2023) arXiv:2312.11170
- [129]
- C. Gidney, “Stim: a fast stabilizer circuit simulator”, Quantum 5, 497 (2021) arXiv:2103.02202 DOI
- [130]
- N. Delfosse and A. Paetznick, “Spacetime codes of Clifford circuits”, (2023) arXiv:2304.05943
- [131]
- H. P. Nautrup et al., “Optimizing Quantum Error Correction Codes with Reinforcement Learning”, Quantum 3, 215 (2019) arXiv:1812.08451 DOI
- [132]
- R. Raussendorf, J. Harrington, and K. Goyal, “A fault-tolerant one-way quantum computer”, Annals of Physics 321, 2242 (2006) arXiv:quant-ph/0510135 DOI
- [133]
- B. Yoshida, “Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes”, Annals of Physics 326, 15 (2011) arXiv:1007.4601 DOI
- [134]
- A. Kubica, B. Yoshida, and F. Pastawski, “Unfolding the color code”, New Journal of Physics 17, 083026 (2015) arXiv:1503.02065 DOI
- [135]
- A. B. Aloshious, A. N. Bhagoji, and P. K. Sarvepalli, “On the Local Equivalence of 2D Color Codes and Surface Codes with Applications”, (2018) arXiv:1804.00866
- [136]
- M. S. Kesselring et al., “Anyon Condensation and the Color Code”, PRX Quantum 5, (2024) arXiv:2212.00042 DOI
- [137]
- J. T. Anderson, “Homological Stabilizer Codes”, (2011) arXiv:1107.3502
- [138]
- M. Suchara, S. Bravyi, and B. Terhal, “Constructions and noise threshold of topological subsystem codes”, Journal of Physics A: Mathematical and Theoretical 44, 155301 (2011) arXiv:1012.0425 DOI
- [139]
- V. V. Gayatri and P. K. Sarvepalli, “Decoding Algorithms for Hypergraph Subsystem Codes and Generalized Subsystem Surface Codes”, (2018) arXiv:1805.12542
- [140]
- C. Benito et al., “Comparative study of quantum error correction strategies for the heavy-hexagonal lattice”, (2024) arXiv:2402.02185
- [141]
- T. D. Ellison et al., “Pauli topological subsystem codes from Abelian anyon theories”, Quantum 7, 1137 (2023) arXiv:2211.03798 DOI
- [142]
- A. Dua et al., “Sorting topological stabilizer models in three dimensions”, Physical Review B 100, (2019) arXiv:1908.08049 DOI

## Page edit log

- Victor V. Albert (2023-03-29) — most recent
- Marcus P da Silva (2023-03-20)
- Victor V. Albert (2022-09-20)
- Victor V. Albert (2022-06-15)
- Tony Lau (2022-04-02)
- Hassan Shapourian (2022-04-01)
- Victor V. Albert (2022-02-15)
- Philippe Faist (2022-02-11)
- Victor V. Albert (2021-11-05)
- Philippe Faist (2021-11-03)
- Michael Vasmer (2021-11-02)

## Cite as:

“Kitaev surface code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/surface