Projective-plane surface code[1] 

Description

A family of Kitaev surface codes on the non-orientable 2-dimensional compact manifold \(\mathbb{R}P^2\) (in contrast to a genus-\(g\) surface). Whereas genus-\(g\) surface codes require \(2g\) logical qubits, qubit codes on \(\mathbb{R}P^2\) are made from a single logical qubit.

Protection

If \(\mathcal{C}\) is a cellulation of \(\mathbb{R}P^2\), then the bit-flip distance \(d_X\) is the shortest cycle in \(\mathcal{C}\), and the phase-flip distance \(d_Z\) is the shortest cycle in the dual cellulation \(\mathcal{C}^*\).

Rate

The rate is \(1/n\), where \(n\) is the number of edges of the particular cellulation.

Parent

Child

Cousin

References

[1]
M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum codes”, (1998) arXiv:quant-ph/9810055
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: real_projective_plane

Cite as:
“Projective-plane surface code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/real_projective_plane
BibTeX:
@incollection{eczoo_real_projective_plane,
  title={Projective-plane surface code},
  booktitle={The Error Correction Zoo},
  year={2021},
  editor={Albert, Victor V. and Faist, Philippe},
  url={https://errorcorrectionzoo.org/c/real_projective_plane}
}
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/real_projective_plane

Cite as:

“Projective-plane surface code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/real_projective_plane

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/qubits/stabilizer/topological/surface/two_dim/real_projective_plane.yml.