\([[9,1,3]]\) Shor code[1]
Description
Nine-qubit CSS code that is the first quantum error-correcting code.
Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{2\sqrt{2}}\left(|000\rangle+|111\rangle\right)^{\otimes3}\\ |\overline{1}\rangle&=\frac{1}{2\sqrt{2}}\left(|000\rangle-|111\rangle\right)^{\otimes3}~. \end{split} \tag*{(1)}\end{align} The code works by concatenating each qubit of a phase-flip with a bit-flip repetition code. Therefore, the code can correct both type of errors simultaneously.
Specifically, a state is phase-flip error-corrected by a three-qubit phase-flip repetition code, with stabilizer generators \(X_0 X_1I_2\) and \(X_0I_1X_2\) in \(X\) basis, where the subscript represents the qubit index. Each logical qubit is encoded using \begin{align} \label{eq:phase-flip} \begin{split} |\overline{0}\rangle &= |+_0+_1+_2\rangle \\ |\overline{1}\rangle &= |-_0-_1-_2\rangle . \end{split} \tag*{(2)}\end{align} Then, each physical qubit used in (2) is further encoded in the three-qubit bit-flip repetition code, \begin{align} |\pm _j \rangle = \frac{1}{\sqrt{2}}( |0_{j0}0_{j1}0_{j2}\rangle \pm |1_{j0}1_{j1}1_{j2}\rangle), \tag*{(3)}\end{align} each with bit-flip error stabilizer generators \(Z_{j0}Z_{j1}I_{j2}\) and \(Z_{j0}I_{j1}Z_{j2} \) with \(j=0,1,2\). Notice now the phase-flip error stabilizer generator is extended as \(X_j = X_{j0}X_{j1}X_{j2}\). As a result, the stabilizer generators with the qubit index flattened are \begin{align} \begin{split} Z_{j0}Z_{j1}I_{j2} &\rightarrow \{Z_0Z_1, Z_3Z_4, Z_6Z_7\} \\ Z_{j0}I_{j1}Z_{j2} &\rightarrow \{Z_0Z_2, Z_3Z_5, Z_6Z_8\} \\ X_0 X_1I_2 &\rightarrow \{X_0X_1X_2X_3X_4X_5\}\\ X_0 I_1X_2 &\rightarrow \{X_0X_1X_2X_6X_7X_8\}. \end{split} \tag*{(4)}\end{align}
Protection
Encoding
Decoding
Fault Tolerance
Realizations
Parents
- Quantum parity code (QPC) — The Shor code is part of the sub-family of \([[m^2,1,m]]\) QPCs.
- Projective-plane surface code — The Shor code is one of the nine-qubit surface codes defined on the projective plane \(\mathbb{R}P^2\) [8; Fig. 4].
- \([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code — The \([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code for \(q=2\) reduces to the \([[9,1,3]]\) Shor code.
Cousins
- Quantum repetition code — The Shor code is a concatenation of a three-qubit bit-flip with a three-qubit phase-flip repetition code.
- Concatenated qubit code — The Shor code is a concatenation of a three-qubit bit-flip with a three-qubit phase-flip repetition code.
- Bacon-Shor code — The \([[9,1,3,3]]\) Bacon-Shor code reduces to the Shor code for a particular gauge configuration.
- Quantum error-correcting code (QECC) — The Shor code is the first quantum error-correcting code.
- Cluster-state code — The Shor code admits a codeword that is the cluster state of a particular nine-vertex graph [9,10].
- \([[9,1,3]]_{\mathbb{R}}\) Lloyd-Slotine code — The Lloyd-Slotine nine-mode code is a bosonic analogue of Shor's code.
- Hybrid stabilizer code — The Shor code can be modified to store three additional classical bits to yield a \([[9,1:3,3]]\) hybrid stabilizer code [11].
- \(((9,2,3))\) Ruskai code — The \(((9,2,3))\) Ruskai code results from projecting the Shor code into the PI qubit subspace [12].
- \([[8,2,2]]\) hyperbolic color code — The Shor code (\([[8,2,2]]\) color code) is a small surface (color) code defined on the projective plane.
- Surface-17 code — Both Shor's code and surface-17 are \([[9,1,3]]\) codes, but they are distinct (e.g., they have different quantum weight enumerators).
References
- [1]
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Physical Review A 52, R2493 (1995) DOI
- [2]
- R. Zen et al., “Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning”, (2024) arXiv:2402.17761
- [3]
- M. Nakahara, “Quantum Computing”, (2008) DOI
- [4]
- N. H. Nguyen et al., “Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer”, Physical Review Applied 16, (2021) arXiv:2104.01205 DOI
- [5]
- D. M. Debroy et al., “Optimizing Stabilizer Parities for Improved Logical Qubit Memories”, Physical Review Letters 127, (2021) arXiv:2105.05068 DOI
- [6]
- Y.-H. Luo et al., “Quantum teleportation of physical qubits into logical code spaces”, Proceedings of the National Academy of Sciences 118, (2021) arXiv:2009.06242 DOI
- [7]
- R. Zhang et al., “Loss-tolerant all-photonic quantum repeater with generalized Shor code”, Optica 9, 152 (2022) arXiv:2203.07979 DOI
- [8]
- M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum codes”, (1998) arXiv:quant-ph/9810055
- [9]
- Griffiths, Robert B. "Graph states and graph codes."
- [10]
- Y. Hwang and J. Heo, “On the relation between a graph code and a graph state”, (2015) arXiv:1511.05647
- [11]
- I. Kremsky, M.-H. Hsieh, and T. A. Brun, “Classical enhancement of quantum-error-correcting codes”, Physical Review A 78, (2008) arXiv:0802.2414 DOI
- [12]
- M. B. Ruskai, “Pauli Exchange Errors in Quantum Computation”, Physical Review Letters 85, 194 (2000) arXiv:quant-ph/9906114 DOI
Page edit log
- Remmy Zen (2024-07-15) — most recent
- Victor V. Albert (2022-06-29)
- Victor V. Albert (2022-03-15)
- Victor V. Albert (2021-12-10)
- Qingfeng (Kee) Wang (2021-12-07)
Cite as:
“\([[9,1,3]]\) Shor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/shor_nine