\([[9,1,3]]\) Shor code[1]
Description
Nine-qubit CSS code that is the first quantum error-correcting code.
Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{2\sqrt{2}}\left(|000\rangle+|111\rangle\right)^{\otimes3}\\ |\overline{1}\rangle&=\frac{1}{2\sqrt{2}}\left(|000\rangle-|111\rangle\right)^{\otimes3}~. \end{split} \tag*{(1)}\end{align} A stabilizer tableau for the code is \begin{align} \begin{bmatrix} Z & Z & I & I & I & I & I & I & I \\ I & Z & Z & I & I & I & I & I & I \\ I & I & I & Z & Z & I & I & I & I \\ I & I & I & I & Z & Z & I & I & I \\ I & I & I & I & I & I & Z & Z & I \\ I & I & I & I & I & I & I & Z & Z \\ X & X & X & X & X & X & I & I & I \\ I & I & I & X & X & X & X & X & X \end{bmatrix}~. \tag*{(2)}\end{align} The encoder-respecting form of the Shor code is a star-shaped tree graph [2]. The code works by concatenating each qubit of a phase-flip with a bit-flip repetition code. Therefore, the code can correct both type of errors simultaneously.
Protection
Encoding
Decoding
Fault Tolerance
Realizations
Parents
- Quantum parity code (QPC) — The Shor code is part of the sub-family of \([[m^2,1,m]]\) QPCs.
- Projective-plane surface code — The Shor code is one of the nine-qubit surface codes defined on the projective plane \(\mathbb{R}P^2\) [9; Fig. 4].
- \([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code — The \([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code for \(q=2\) reduces to the \([[9,1,3]]\) Shor code.
Cousins
- Quantum repetition code — The Shor code is a concatenation of a three-qubit bit-flip with a three-qubit phase-flip repetition code.
- Concatenated qubit code — The Shor code is a concatenation of a three-qubit bit-flip with a three-qubit phase-flip repetition code.
- \([[9,1,3,3]]\) Nine-qubit Bacon-Shor code — The \([[9,1,3,3]]\) Bacon-Shor code reduces to the Shor code for a particular gauge configuration.
- Quantum error-correcting code (QECC) — The Shor code is the first quantum error-correcting code.
- Cluster-state code — The Shor code admits a codeword that is the cluster state of a particular nine-vertex graph [10,11].
- \([[9,1,3]]_{\mathbb{R}}\) Lloyd-Slotine code — The Lloyd-Slotine nine-mode code is a bosonic analogue of Shor's code.
- Hybrid stabilizer code — The Shor code can be modified to store three additional classical bits to yield a \([[9,1:3,3]]\) hybrid stabilizer code [12].
- \(((9,2,3))\) Ruskai code — The \(((9,2,3))\) Ruskai code results from projecting the Shor code into the PI qubit subspace [13].
- \([[8,2,2]]\) hyperbolic color code — The Shor code (\([[8,2,2]]\) color code) is a small surface (color) code defined on the projective plane.
- Surface-17 code — Both Shor's code and surface-17 are \([[9,1,3]]\) codes, but they are distinct (e.g., they have different quantum weight enumerators).
References
- [1]
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Physical Review A 52, R2493 (1995) DOI
- [2]
- J. Z. Lu, A. B. Khesin, and P. W. Shor, “Universal graph representation of stabilizer codes”, (2024) arXiv:2411.14448
- [3]
- R. Zen, J. Olle, L. Colmenarez, M. Puviani, M. Müller, and F. Marquardt, “Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning”, (2024) arXiv:2402.17761
- [4]
- M. Nakahara, “Quantum Computing”, (2008) DOI
- [5]
- N. H. Nguyen, M. Li, A. M. Green, C. Huerta Alderete, Y. Zhu, D. Zhu, K. R. Brown, and N. M. Linke, “Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer”, Physical Review Applied 16, (2021) arXiv:2104.01205 DOI
- [6]
- D. M. Debroy, L. Egan, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Cetina, C. Monroe, and K. R. Brown, “Optimizing Stabilizer Parities for Improved Logical Qubit Memories”, Physical Review Letters 127, (2021) arXiv:2105.05068 DOI
- [7]
- Y.-H. Luo et al., “Quantum teleportation of physical qubits into logical code spaces”, Proceedings of the National Academy of Sciences 118, (2021) arXiv:2009.06242 DOI
- [8]
- R. Zhang, L.-Z. Liu, Z.-D. Li, Y.-Y. Fei, X.-F. Yin, L. Li, N.-L. Liu, Y. Mao, Y.-A. Chen, and J.-W. Pan, “Loss-tolerant all-photonic quantum repeater with generalized Shor code”, Optica 9, 152 (2022) arXiv:2203.07979 DOI
- [9]
- M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum codes”, (1998) arXiv:quant-ph/9810055
- [10]
- Griffiths, Robert B. "Graph states and graph codes."
- [11]
- Y. Hwang and J. Heo, “On the relation between a graph code and a graph state”, (2015) arXiv:1511.05647
- [12]
- I. Kremsky, M.-H. Hsieh, and T. A. Brun, “Classical enhancement of quantum-error-correcting codes”, Physical Review A 78, (2008) arXiv:0802.2414 DOI
- [13]
- M. B. Ruskai, “Pauli Exchange Errors in Quantum Computation”, Physical Review Letters 85, 194 (2000) arXiv:quant-ph/9906114 DOI
Page edit log
- Remmy Zen (2024-07-15) — most recent
- Victor V. Albert (2022-06-29)
- Victor V. Albert (2022-03-15)
- Victor V. Albert (2021-12-10)
- Qingfeng (Kee) Wang (2021-12-07)
Cite as:
“\([[9,1,3]]\) Shor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/shor_nine