Description
Modular-qudit 2D subsystem stabilizer code whose low-energy excitations realize the three-fermion anyon theory [1,3,4]. One version uses two qubits at each site [2], while other manifestations utilize a single qubit per site and only two-body interactions [1,5]. All are expected to be equivalent to each other under local Clifford transformations.
Parents
- Subsystem qubit stabilizer code
- Abelian topological code — The 3F code is a subsystme code characterized by 3F topological order [2], which is chiral and modular.
Cousins
- Kitaev surface code — One version of the 3F subsystem code can be obtained from two copies of the square-lattice surface code by gauging out the anyons \(e_1m_1e_2\) and \(e_2m_2\) [2; Sec. 7.4].
- Three-fermion (3F) model code — The 3F model cluster-like state encodes the temporal gate operations on the 3F subsystem code into a third spatial dimension [6]. In addition, one of possible 2D boundaries of the 3F model code is effectively a 2D 3F subsystem code.
References
- [1]
- H. Bombin, M. Kargarian, and M. A. Martin-Delgado, “Interacting anyonic fermions in a two-body color code model”, Physical Review B 80, (2009) arXiv:0811.0911 DOI
- [2]
- T. D. Ellison et al., “Pauli topological subsystem codes from Abelian anyon theories”, (2022) arXiv:2211.03798
- [3]
- E. Rowell, R. Stong, and Z. Wang, “On classification of modular tensor categories”, (2009) arXiv:0712.1377
- [4]
- H. Bombin, G. Duclos-Cianci, and D. Poulin, “Universal topological phase of two-dimensional stabilizer codes”, New Journal of Physics 14, 073048 (2012) arXiv:1103.4606 DOI
- [5]
- H. Bombin, “Topological subsystem codes”, Physical Review A 81, (2010) arXiv:0908.4246 DOI
- [6]
- S. Roberts and D. J. Williamson, “3-Fermion topological quantum computation”, (2020) arXiv:2011.04693
Page edit log
- Victor V. Albert (2021-12-29) — most recent
Cite as:
“Three-fermion (3F) subsystem code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/subsystem_three_fermion