Here is a list of asymmetric quantum codes, i.e., codes that perform much better against one type of noise than another type.
Code | Description |
---|---|
2D hyperbolic surface code | Hyperbolic surface codes based on a tessellation of a closed 2D manifold with a hyperbolic geometry (i.e., non-Euclidean geometry, e.g., saddle surfaces when defined on a 2D plane). |
3D lattice stabilizer code | Lattice stabilizer code in three spatial dimensions. Qubit codes are conjectured to admit either fracton phases or abelian topological phases that are equivalent to multiple copies of the 3D surface code and/or the 3D fermionic surface code via a local constant-depth Clifford circuit [1]. |
Abelian LP code | An LP code for Abelian group \(G\). The case of \(G\) being a cyclic group is a GB code (a.k.a. a quasi-cyclic LP code) [2; Sec. III.E]. A particular family with \(G=\mathbb{Z}_{\ell}\) yields codes with constant rate and nearly constant distance. |
Asymmetric quantum code | Quantum systems can be roughly characterized by two types of noise, a bit-flip noise that maps canonical basis states into each other, and a phase-flip noise that induces relative phases between superpositions of such basis states. A code cannot protect against both types of noise arbitrarily well, and there is a tradeoff between the two types of protection. An asymmetric quantum code is one that performs much better against one type of noise than the other type. Such codes typically have tunable distances against each noise type and include CSS codes, GKP codes, and QSCs. |
Bacon-Shor code | Subsystem CSS code defined on an \(m_1 \times m_2\) lattice of qubits that generalizes the \([[9,1,3]]\) (subspace) Shor code. It is said to be symmetric when \(m_1=m_2\), and asymmetric otherwise. |
Binomial code | Bosonic rotation codes designed to approximately protect against errors consisting of powers of raising and lowering operators up to some maximum power. Binomial codes can be thought of as spin-coherent states embedded into an oscillator [3]. |
Calderbank-Shor-Steane (CSS) stabilizer code | A stabilizer code admitting a set of stabilizer generators that are either \(Z\)-type or \(X\)-type operators. The two sets of stabilizer generators can often, but not always, be related to parts of a chain complex over the appropriate ring or field. |
Clifford-deformed surface code (CDSC) | A generally non-CSS derivative of the surface code defined by applying a constant-depth Clifford circuit to the original (CSS) surface code. Unlike the surface code, CDSCs include codes whose thresholds and subthreshold performance are enhanced under noise biased towards dephasing. Examples of CDSCs include the XY code, XZZX code, and random CDSCs. |
Compass code | Subspace or subsystem CSS code defined by gauge-fixing the Bacon-Shor code, i.e., the code whose gauge group consists of terms in the compass model Hamiltonian [4–6] on a square lattice. Families of random codes perform well against biased noise and spatially dependent (i.e., asymmetric) noise. |
Concatenated Steane code | A member of the family of \([[7^m,1,3^m]]\) CSS codes, each of which is a recursive level-\(m\) concatenatenation of the Steane code. This family is one of the first to admit a concatenated threshold [7–11]. |
Distance-balanced code | Galois-qudit CSS code constructed from a CSS code and a classical code using a distance-balancing procedure based on a generalized homological product. The initial code is said to be unbalanced, i.e., tailored to noise biased toward either bit- or phase-flip errors, and the procedure can result in a code that is treats both types of errors on a more equal footing. The original distance-balancing procedure [12], later generalized [13; Thm. 4.2], can yield QLDPC codes [12; Thm. 1]. |
EA qubit stabilizer code | Constructed using a variation of the stabilizer formalism designed to utilize pre-shared entanglement between sender and receiver. A code is typically denoted as \([[n,k;e]]\) or \([[n,k,d;e]]\), where \(d\) is the distance of the underlying non-EA \([[n,k,d]]\) code, and \(e\) is the number of required pre-shared maximally entangled Bell states (ebits). While other entangled states can be used, there is always a choice a generators such that the Bell state suffices while still using the fewest ebits. |
Finite-geometry LDPC (FG-LDPC) code | LDPC code whose parity-check matrix is the incidence matrix of points and hyperplanes in either a Euclidean or a projective geometry. Such codes are called Euclidean-geometry LDPC (EG-LDPC) and projective-geometry LDPC (PG-LDPC), respectively. Such constructions have been generalized to incidence matrices of hyperplanes of different dimensions [14]. |
GKP-surface code | A concatenated code whose outer code is a GKP code and whose inner code is a toric surface code [15], rotated surface code [16–20], or XZZX surface code [21]. |
Galois-qudit BCH code | True Galois-qudit stabilizer code constructed from BCH codes via either the Hermitian construction or the Galois-qudit CSS construction. Parameters can be improved by applying Steane enlargement [22]. |
Galois-qudit RS code | An \([[n,k,n-k+1]]_q\) (with \(q>n\)) Galois-qudit CSS code constructed using two RS codes over \(GF(q)\). |
Hastings-Haah Floquet code | DA code whose sequence of check-operator measurements is periodic. The first instance of a dynamical code. |
Hermitian code | Evaluation AG code of rational functions evaluated on points lying on a Hermitian curve in either affine or projective space. Hermitian codes improve over RS codes in length: that RS codes have length at most \(q+1\) while Hermitian codes have length \(q^3 + 1\). |
Kitaev surface code | A family of Abelian topological CSS stabilizer codes whose generators are few-body \(X\)-type and \(Z\)-type Pauli strings associated to the stars and plaquettes, respectively, of a cellulation of a two-dimensional surface (with a qubit located at each edge of the cellulation). Codewords correspond to ground states of the surface code Hamiltonian, and error operators create or annihilate pairs of anyonic charges or vortices. |
Quantum Reed-Muller code | A CSS code formed from a classical Reed-Muller (RM) code or its punctured/shortened versions. Such codes often admit transversal logical gates in the Clifford hierarchy. |
Quantum maximum-distance-separable (MDS) code | A type of block quantum code whose parameters satisfy the quantum Singleton bound with equality. |
Quantum parity code (QPC) | A \([[m_1 m_2,1,\min(m_1,m_2)]]\) CSS code family obtained from concatenating an \(m_1\)-qubit phase-flip repetition code with an \(m_2\)-qubit bit-flip repetition code. |
Quantum spherical code (QSC) | Code whose codewords are superpositions of points on an \(n\)-dimensional real or complex sphere. Such codes can in principle be defined on any configuration space housing a sphere, but the focus of this entry is on QSCs constructed out of coherent-state constellations. |
Square-lattice GKP code | Single-mode GKP qudit-into-oscillator code based on the rectangular lattice. Its stabilizer generators are oscillator displacement operators \(\hat{S}_q(2\alpha)=e^{-2i\alpha \hat{p}}\) and \(\hat{S}_p(2\beta)=e^{2i\beta \hat{x}}\). To ensure \(\hat{S}_q(2\alpha)\) and \(\hat{S}_p(2\beta)\) generate a stabilizer group that is Abelian, there is a constraint that \(\alpha\beta=2q\pi\) where \(q\) is an integer denoting the logical dimension. |
Subsystem surface code | Subsystem version of the surface code defined on a square lattice with qubits placed at every vertex and center of everry edge. |
Tensor-network code | Block quantum code constructed using a tensor-network-based graphical framework from atomic tensors a.k.a. quantum Lego blocks [23], which can be encoding isometries for smaller quantum codes. The class of codes constructed using the framework depends on the choice of atomic Lego blocks. |
Twisted XZZX toric code | A cyclic code that can be thought of as the XZZX toric code with shifted (a.k.a twisted) boundary conditions. Admits a set of stabilizer generators that are cyclic shifts of a particular weight-four \(XZZX\) Pauli string. For example, a seven-qubit \([[7,1,3]]\) variant has stabilizers generated by cyclic shifts of \(XZIZXII\) [24]. Codes encode either one or two logical qubits, depending on qubit geometry, and perform well against biased noise [25]. |
Two-component cat code | Code whose codespace is spanned by two coherent states \(\left|\pm\alpha\right\rangle\) for nonzero complex \(\alpha\). |
XY surface code | Non-CSS derivative of the surface code whose generators are \(XXXX\) and \(YYYY\), obtained by mapping \(Z \to Y\) in the surface code. |
XYZ color code | Non-CSS variant of the 6.6.6 color code whose generators are \(XZXZXZ\) and \(ZYZYZY\) Pauli strings associated to each hexagonal in the hexagonal (6.6.6) tiling. A further variation called the domain wall color code admits generators of the form \(XXXZZZ\) and \(ZZZXXX\) [26]. |
XYZ product code | A non-CSS QLDPC code constructed from a particular hypergraph product of three classical codes. The idea is that rather than taking a product of only two classical codes to produce a CSS code, a third classical code is considered, acting with Pauli-\(Y\) operators. When the underlying classical codes are 1D (e.g., repetition codes), the XYZ product yields a 3D code. Higher dimensional versions have been constructed [27]. |
XZZX surface code | Non-CSS variant of the rotated surface code whose generators are \(XZZX\) Pauli strings associated, clock-wise, to the vertices of each face of a two-dimensional lattice (with a qubit located at each vertex of the tessellation). |
References
- [1]
- A. Dua, I. H. Kim, M. Cheng, and D. J. Williamson, “Sorting topological stabilizer models in three dimensions”, Physical Review B 100, (2019) arXiv:1908.08049 DOI
- [2]
- P. Panteleev and G. Kalachev, “Quantum LDPC Codes With Almost Linear Minimum Distance”, IEEE Transactions on Information Theory 68, 213 (2022) arXiv:2012.04068 DOI
- [3]
- V. V. Albert et al., “Performance and structure of single-mode bosonic codes”, Physical Review A 97, (2018) arXiv:1708.05010 DOI
- [4]
- K. I. Kugel’ and D. I. Khomskiĭ, “The Jahn-Teller effect and magnetism: transition metal compounds”, Soviet Physics Uspekhi 25, 231 (1982) DOI
- [5]
- J. Dorier, F. Becca, and F. Mila, “Quantum compass model on the square lattice”, Physical Review B 72, (2005) arXiv:cond-mat/0501708 DOI
- [6]
- Z. Nussinov and J. van den Brink, “Compass and Kitaev models -- Theory and Physical Motivations”, (2013) arXiv:1303.5922
- [7]
- E. Knill, R. Laflamme, and W. H. Zurek, “Resilient quantum computation: error models and thresholds”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 365 (1998) arXiv:quant-ph/9702058 DOI
- [8]
- A. M. Steane, “Efficient fault-tolerant quantum computing”, Nature 399, 124 (1999) arXiv:quant-ph/9809054 DOI
- [9]
- A. M. Steane, “Overhead and noise threshold of fault-tolerant quantum error correction”, Physical Review A 68, (2003) arXiv:quant-ph/0207119 DOI
- [10]
- K. M. Svore, B. M. Terhal, and D. P. DiVincenzo, “Local fault-tolerant quantum computation”, Physical Review A 72, (2005) arXiv:quant-ph/0410047 DOI
- [11]
- K. M. Svore, D. P. DiVincenzo, and B. M. Terhal, “Noise Threshold for a Fault-Tolerant Two-Dimensional Lattice Architecture”, (2006) arXiv:quant-ph/0604090
- [12]
- M. B. Hastings, “Weight Reduction for Quantum Codes”, (2016) arXiv:1611.03790
- [13]
- S. Evra, T. Kaufman, and G. Zémor, “Decodable quantum LDPC codes beyond the \(\sqrt{n}\) distance barrier using high dimensional expanders”, (2020) arXiv:2004.07935
- [14]
- Heng Tang, Jun Xu, S. Lin, and K. A. S. Abdel-Ghaffar, “Codes on finite geometries”, IEEE Transactions on Information Theory 51, 572 (2005) DOI
- [15]
- C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
- [16]
- K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, “High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction”, Physical Review X 8, (2018) arXiv:1712.00294 DOI
- [17]
- K. Noh and C. Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code”, Physical Review A 101, (2020) arXiv:1908.03579 DOI
- [18]
- M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-Nielsen, and U. L. Andersen, “Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture”, PRX Quantum 2, (2021) arXiv:2101.03014 DOI
- [19]
- K. Noh, C. Chamberland, and F. G. S. L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code”, PRX Quantum 3, (2022) arXiv:2103.06994 DOI
- [20]
- M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
- [21]
- J. Zhang, Y.-C. Wu, and G.-P. Guo, “Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX surface code”, Physical Review A 107, (2023) arXiv:2207.04383 DOI
- [22]
- G. G. La Guardia and R. Palazzo Jr., “Constructions of new families of nonbinary CSS codes”, Discrete Mathematics 310, 2935 (2010) DOI
- [23]
- C. Cao and B. Lackey, “Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks”, PRX Quantum 3, (2022) arXiv:2109.08158 DOI
- [24]
- A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia, “Tailored Codes for Small Quantum Memories”, Physical Review Applied 8, (2017) arXiv:1703.08179 DOI
- [25]
- Q. Xu, N. Mannucci, A. Seif, A. Kubica, S. T. Flammia, and L. Jiang, “Tailored XZZX codes for biased noise”, (2022) arXiv:2203.16486
- [26]
- K. Tiurev, A. Pesah, P.-J. H. S. Derks, J. Roffe, J. Eisert, M. S. Kesselring, and J.-M. Reiner, “Domain Wall Color Code”, Physical Review Letters 133, (2024) arXiv:2307.00054 DOI
- [27]
- Z. Liang, Z. Yi, F. Yang, J. Chen, Z. Wang, and X. Wang, “High-dimensional quantum XYZ product codes for biased noise”, (2024) arXiv:2408.03123