[Jump to code hierarchy]

Galois-qudit RS code[1]

Alternative names: Galois-qudit polynomial code (QPyC).

Description

An \([[n,k,n-k+1]]_q\) (with \(q>n\)) Galois-qudit CSS code constructed using two RS codes over \(GF(q)\).

Let \(C_1\) be a \([n,k_1,d_1]_q\) RS code and \(C_2^\perp\) be a \([n,k_2,d_2]_q\) RS code, modified such that \(C_2^\perp \subseteq C_1\) and \(0\le k_2 \le k_1 \le n\). Then, a polynomial code is a non-degenerate \([[n,k_2,d]]_q\) Galois-qudit CSS code with \(d=\min(n-k_1+1,k_1-k_2+1)\). The polynomial code is the span of the basis codewords over GF(\(q\)) \begin{align} |\overline{\beta_0,\cdots,\beta_{k_2-1}}\rangle = \sum_{(\beta_{k_2},\cdots,\beta_{k_1-1})\in GF(q) } \bigotimes_{i=1}^{n} \left| \sum_{j=0}^{k_1-1} \beta_j \alpha_i^j \right\rangle, \tag*{(1)}\end{align} where \((\alpha_1, \cdots, \alpha_n)\) are \(n\) distinct points chosen for code \(C_1\) from \(GF(q)\setminus \{0\}\).'

Transversal Gates

There exists an order \([[n,\Theta(n),\Theta(n)]]_{n^2}\) punctured RS code family that admits transversal \(CCZ\) gates for any three logical qubits [2]. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of several qubits; see [3,57][4; Sec. 5.3]. This yields a qubit code family that is asymptotically good up to poly-logarithmic factors [2].

Cousins

Primary Hierarchy

Parents
Galois-qudit RS codes are constructed via the CSS construction from RS codes, which are evaluation AG codes.
Galois-qudit RS code
Children
Galois-qudit RS codes for prime-dimensional qudits are prime-qudit RS codes.

References

[1]
D. Aharonov and M. Ben-Or, “Fault-Tolerant Quantum Computation With Constant Error Rate”, (1999) arXiv:quant-ph/9906129
[2]
Z. He, V. Vaikuntanathan, A. Wills, and R. Y. Zhang, “Quantum Codes with Addressable and Transversal Non-Clifford Gates”, (2025) arXiv:2502.01864
[3]
A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes”, IEEE Transactions on Information Theory 47, 3065 (2001) DOI
[4]
A. Niehage, “Quantum Goppa Codes over Hyperelliptic Curves”, (2005) arXiv:quant-ph/0501074
[5]
D. Gottesman. Surviving as a quantum computer in a classical world (2024) URL
[6]
Q. T. Nguyen, “Good binary quantum codes with transversal CCZ gate”, (2024) arXiv:2408.10140
[7]
L. Golowich and V. Guruswami, “Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates”, (2024) arXiv:2408.09254
[8]
Z. Li, L.-J. Xing, and X.-M. Wang, “A family of asymptotically good quantum codes based on code concatenation”, (2008) arXiv:0901.0042
[9]
La Guardia, G. G., R. Palazzo, and C. Lavor. "Nonbinary quantum Reed-Solomon codes." Int. J. Pure Applied Math 65.1 (2010): 55-63.
[10]
S. A. Aly, “On Quantum and Classical Error Control Codes: Constructions and Applications”, (2008) arXiv:0812.5104
[11]
G. G. La Guardia, “Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes”, Quantum Information Processing 11, 591 (2011) DOI
[12]
A. J. Scott, “Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions”, Physical Review A 69, (2004) arXiv:quant-ph/0310137 DOI
[13]
Z. Raissi, C. Gogolin, A. Riera, and A. Acín, “Optimal quantum error correcting codes from absolutely maximally entangled states”, Journal of Physics A: Mathematical and Theoretical 51, 075301 (2018) arXiv:1701.03359 DOI
[14]
D. Alsina and M. Razavi, “Absolutely maximally entangled states, quantum-maximum-distance-separable codes, and quantum repeaters”, Physical Review A 103, (2021) arXiv:1907.11253 DOI
[15]
M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004) arXiv:quant-ph/0312164 DOI
[16]
M. Marcolli, “Holographic Codes on Bruhat--Tits buildings and Drinfeld Symmetric Spaces”, (2018) arXiv:1801.09623
[17]
M. Heydeman, M. Marcolli, S. Parikh, and I. Saberi, “Nonarchimedean Holographic Entropy from Networks of Perfect Tensors”, (2018) arXiv:1812.04057
[18]
M. Grassl and M. Rotteler, “Quantum block and convolutional codes from self-orthogonal product codes”, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005. 1018 (2005) arXiv:quant-ph/0703181 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: galois_polynomial

Cite as:
“Galois-qudit RS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_polynomial
BibTeX:
@incollection{eczoo_galois_polynomial, title={Galois-qudit RS code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/galois_polynomial} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/galois_polynomial

Cite as:

“Galois-qudit RS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_polynomial

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/evaluation/rs/galois_polynomial.yml.