True Galois-qudit stabilizer code
Description
Also called a linear stabilizer code. A \([[n,k,d]]_{GF(q)}\) stabilizer code whose stabilizer's symplectic representation forms a linear subspace. In other words, the set of \(q\)-ary vectors representing the stabilizer group is closed under both addition and multiplication by elements of \(GF(q)\). In contrast, Galois-qudit stabilizer codes admit sets of vectors that are closed under addition only.
The number of generators \(r\) for a true stabilizer code is a multiple of \(m\) (recall that \(q=p^m\) for Galois qudits). As a result, the number \(k=n-r/m\) of logical qudits is an integer.
Each code can be represented by a stabilizer generator matrix \(H=(A|B)\), where each row \((a|b)\) is the \(GF(q)\)-valued symplectic representation of a stabilizer generator.
Protection
Parent
Child
Cousin
- Linear \(q\)-ary code — A true Galois-qudit stabilizer code is the closest quantum analogue of a linear code over \(GF(q)\) because the \(q\)-ary vectors defining each code form a linear subspace.
Zoo code information
Cite as:
“True Galois-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_true_stabilizer