[Jump to code hierarchy]

True Galois-qudit stabilizer code[13]

Alternative names: Linear stabilizer code.

Description

A \([[n,k,d]]_q\) stabilizer code whose stabilizer's Galois symplectic representation forms a linear subspace. In other words, the set of \(q\)-ary vectors representing the stabilizer group is closed under both addition and multiplication by elements of \(GF(q)\). In contrast, Galois-qudit stabilizer codes admit sets of vectors that are closed under addition only.

The number of generators \(r\) for a true stabilizer code is a multiple of \(m\) (recall that \(q=p^m\) for Galois qudits). As a result, the number \(k=n-r/m\) of logical qudits is an integer.

Each code can be represented by a stabilizer generator matrix \(H=(A|B)\), where each row \((a|b)\) is the Galois symplectic representation of a stabilizer generator.

Protection

Detects errors on up to \(d-1\) qudits, and corrects erasure errors on up to \(d-1\) qudits.

Notes

See Ref. [4,5] for introductions to various stabilizer code constructions.

Cousin

Primary Hierarchy

Parents
True Galois-qudit stabilizer code
Children
True Galois-qudit stabilizer codes for \(q=2\) correspond to qubit stabilizer codes.
The code is a non-CSS stabilizer code in general [6].
Galois-qudit BCH codes can be constructed via the CSS construction or the Hermitian construction.
Quantum duadic codes can be constructed via the CSS construction or the Hermitian construction.
Galois-qudit RM codes can be constructed via the CSS construction or the Hermitian construction.
Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction.
Hermitian codes are true stabilizer codes because they are based on Hermitian self-orthogonal linear (as opposed to additive) codes over \(GF(q^2)\).

References

[1]
A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes”, IEEE Transactions on Information Theory 47, 3065 (2001) DOI
[2]
A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, “Nonbinary stabilizer codes over finite fields”, (2005) arXiv:quant-ph/0508070
[3]
D. Gottesman. Surviving as a quantum computer in a classical world (2024) URL
[4]
A. Klappenecker, “Algebraic quantum coding theory”, Quantum Error Correction 307 (2013) DOI
[5]
M. F. Ezerman, "Quantum Error-Control Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[6]
Z. Wang, S. Yu, H. Fan, and C. H. Oh, “Quantum error-correcting codes over mixed alphabets”, Physical Review A 88, (2013) arXiv:1205.4253 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: galois_true_stabilizer

Cite as:
“True Galois-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_true_stabilizer
BibTeX:
@incollection{eczoo_galois_true_stabilizer, title={True Galois-qudit stabilizer code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/galois_true_stabilizer} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/galois_true_stabilizer

Cite as:

“True Galois-qudit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_true_stabilizer

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/galois_true_stabilizer.yml.