Description
An \([[n,k,d]]_{GF(q)} \) Galois-qudit true stabilizer code admitting a set of stabilizer generators that are either \(Z\)-type or \(X\)-type Galois-qudit Pauli strings. The stabilizer generator matrix, taking values from \(GF(q)\), is of the form \begin{align} H=\begin{pmatrix}0 & H_{Z}\\ H_{X} & 0 \end{pmatrix} \label{eq:parityg} \end{align} such that the rows of the two blocks must be orthogonal \begin{align} H_X H_Z^T=0~. \label{eq:commG} \end{align} The above condition guarantees that the \(X\)-stabilizer generators, defined in the symplectic representation as rows of \(H_X\), commute with the \(Z\)-stabilizer generators associated with \(H_Z\).
Encoding is based on two related \(q\)-ary linear codes, an \([n,k_X,d_X]_q \) code \(C_X\) and \([n,k_Z,d_Z]_q \) code \(C_Z\), satisfying \(C_X^\perp \subseteq C_Z\). The resulting CSS code has \(k=k_X+k_Z-n\) logical qubits and distance \(d\geq\min\{d_X,d_Z\}\). The \(H_X\) (\(H_Z\)) block of \(H\) \eqref{eq:parityg} is the parity-check matrix of the code \(C_X\) (\(C_Z\)). The requirement \(C_X^\perp \subseteq C_Z\) guarantees \eqref{eq:commG}. Basis states for the code are, for \(\gamma \in C_X\), \begin{align} |\gamma + C_Z^\perp \rangle = \frac{1}{\sqrt{|C_Z^\perp|}} \sum_{\eta \in C_Z^\perp} |\gamma + \eta\rangle. \end{align}
Protection
Parent
Children
- Approximate secret-sharing code — The code required to construct this code must be a non-degenerate Galois-qubit CSS code.
- Binary quantum Goppa code — Goppa codes can be realized in the CSS code construction [3].
- Galois-qudit polynomial code (QPyC)
- Lifted-product (LP) code
- Skew-cyclic CSS code
Cousins
- Calderbank-Shor-Steane (CSS) stabilizer code — Extension of qubit CSS codes to Galois qudits.
- Linear \(q\)-ary code — Construction uses two related \(q\)-ary linear codes \(C_X\) and \(C_Z\).
Zoo code information
References
- [1]
- M. GRASSL, T. BETH, and M. RÖTTELER, “ON OPTIMAL QUANTUM CODES”, International Journal of Quantum Information 02, 55 (2004). DOI; quant-ph/0312164
- [2]
- J.-L. Kim and J. Walker, “Nonbinary quantum error-correcting codes from algebraic curves”, Discrete Mathematics 308, 3115 (2008). DOI
- [3]
- A. Niehage, “Nonbinary Quantum Goppa Codes Exceeding the Quantum Gilbert-Varshamov Bound”, Quantum Information Processing 6, 143 (2006). DOI
Cite as:
“Galois-qudit CSS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_css