[Jump to code hierarchy]

Prime-qudit triorthogonal code[1]

Description

An \(m \times n\) matrix over \(GF(p)=\mathbb{Z}_p\) is triorthogonal if its rows \(r_1, \ldots, r_m\) satisfy \(|r_i \cdot r_j| = 0\) and \(|r_i \cdot r_j \cdot r_k| = 0\) modulo \(p\), where addition and multiplication are done on \(GF(p)\). The triorthogonal prime-qudit CSS code associated with the matrix is constructed by mapping non-zero entries in self-orhogonal rows to \(X\) operators, and \(Z\) operators for each row in the orthogonal complement [1,2].

Transversal Gates

Admits a transversal gate from the third level of the qudit Clifford hierarchy [1].

Cousin

  • Prime-qudit RS code— Triorthogonal \(p\)-dimensional prime-qudit RS codes achieve a magic-state yield parameter \(\gamma = O(1/\log p)\) [1].

References

[1]
A. Krishna and J.-P. Tillich, “Towards Low Overhead Magic State Distillation”, Physical Review Letters 123, (2019) arXiv:1811.08461 DOI
[2]
S. Prakash and T. Saha, “Low Overhead Qutrit Magic State Distillation”, (2024) arXiv:2403.06228
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qudit_triorthogonal

Cite as:
“Prime-qudit triorthogonal code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/qudit_triorthogonal
BibTeX:
@incollection{eczoo_qudit_triorthogonal, title={Prime-qudit triorthogonal code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qudit_triorthogonal} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qudit_triorthogonal

Cite as:

“Prime-qudit triorthogonal code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/qudit_triorthogonal

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits/stabilizer/magic/qudit_triorthogonal.yml.