Approximate secret-sharing code[1] 

Description

A family of \( [[n,k,d]]_q \) CSS codes approximately correcting errors on up to \(\lfloor (n-1)/2 \rfloor\) qubits, i.e., with approximate distance approaching the no-cloning bound \(n/2\). Constructed using a non-degenerate CSS code, such as a polynomial quantum code, and a classical authentication scheme. The code can be viewed as an \(t\)-error tolerant secret sharing scheme. Since the code yields a small logical subspace using large registers that contain both classical and quantum information, it is not useful for practical error correction problems, but instead demonstrates the power of approximate quantum error correction.

Protection

Corrects up to \(\lfloor (n-1)/2 \rfloor\) errors with fidelity exponentially lose to 1.

Encoding

Uses a quantum authentication scheme, which is a keyed system in which a valid state has high fidelity, and a classical secret-sharing scheme.

Decoding

Decoding is analagous to reconstruction in a secret sharing scheme and is done in polynomial time. The only required operations are verification of quantum authentication, which is a pair of polynomial-time quantum algorithms that check if the fidelity of the received state is close to 1, and erasure correction for a stabilizer code, which involves solving a system of linear equations.

Parent

Cousins

  • Approximate quantum error-correcting code (AQECC) — Secret-sharing codes approximately correct errors on up to \(\lfloor (n-1)/2 \rfloor\) errors.
  • Galois-qudit RS code — Polynomial codes can be used for a specific construction of this code.
  • Reed-Solomon (RS) code — The classical information in this code is encoded using a Reed-Solomon code.
  • Three-qutrit code — The three-qutrit code defines a minimal secret-sharing scheme [2] that is substantially generalized by approximate secret-sharing codes.
  • Singleton-bound approaching AQECC — Quantum secret-sharing codes have asymptotically decaying rate and require qudit dimension to increase exponentially with \(n\), while Singleton-bound approaching AQECCs have constant rate and qudit dimension.

References

[1]
C. Crepeau, D. Gottesman, and A. Smith, “Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes”, (2005) arXiv:quant-ph/0503139
[2]
R. Cleve, D. Gottesman, and H.-K. Lo, “How to Share a Quantum Secret”, Physical Review Letters 83, 648 (1999) arXiv:quant-ph/9901025 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_secret_sharing

Cite as:
“Approximate secret-sharing code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/quantum_secret_sharing
BibTeX:
@incollection{eczoo_quantum_secret_sharing, title={Approximate secret-sharing code}, booktitle={The Error Correction Zoo}, year={2021}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_secret_sharing} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_secret_sharing

Cite as:

“Approximate secret-sharing code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2021. https://errorcorrectionzoo.org/c/quantum_secret_sharing

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/css/quantum_secret_sharing.yml.