Galois-qudit GRS code[1,2] 


True \(q\)-Galois-qudit stabilizer code constructed from generalized Reed-Solomon (GRS) codes via either the Hermitian construction [24] or the Galois-qudit CSS construction [1,5].


Concatenations of quantum GRS codes and random stabilizer codes can achieve the quantum Gilbert-Varshamov bound [6].





D. Aharonov and M. Ben-Or, “Fault-Tolerant Quantum Computation With Constant Error Rate”, (1999) arXiv:quant-ph/9906129
L. Jin and C. Xing, “A Construction of New Quantum MDS Codes”, (2020) arXiv:1311.3009
X. Liu, L. Yu, and H. Liu, “New quantum codes from Hermitian dual-containing codes”, International Journal of Quantum Information 17, 1950006 (2019) DOI
L. Jin et al., “Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes”, IEEE Transactions on Information Theory 56, 4735 (2010) DOI
Z. Li, L.-J. Xing, and X.-M. Wang, “Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes”, Physical Review A 77, (2008) arXiv:0812.4514 DOI
Y. Ouyang, “Concatenated Quantum Codes Can Attain the Quantum Gilbert–Varshamov Bound”, IEEE Transactions on Information Theory 60, 3117 (2014) arXiv:1004.1127 DOI
Page edit log

Your contribution is welcome!

on (edit & pull request)— see instructions

edit on this site

Zoo Code ID: galois_grs

Cite as:
“Galois-qudit GRS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.
@incollection{eczoo_galois_grs, title={Galois-qudit GRS code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Galois-qudit GRS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.