Description
An instance of the matching code based on the Kitaev honeycomb model. It is described on a honeycomb tiling with \(XYZXYZ\) stabilizers on each hexagonal plaquette. Each vertical pair of qubits has an \(XX\), \(YY\), or \(ZZ\) link stabilizer depending on the orientation of the plaquette stabilizers.Protection
As a stabilizer code with boundaries, protects a single qubit with parameters \([[2 d^2, 1, d]]\).Code Capacity Threshold
\(50\%\) for pure \(Z\), \(Y\), or \(Z\) noise under maximum-likelihood decoding.Threshold matches that of the \(XZZX\) code for various bias levels of \(X\), \(Y\), or \(Z\) biased noise under maximum-likelihood decoding.\(\approx 18\%\) for depolarizing noise under maximum-likelihood decoding.\(18.3\%\) under biased noise [4].Notes
Isolated \(X\), \(Y\), and \(Z\) errors lead to unidirectional pairs of plaquette defects along the three directions of the honeycomb tiling.Cousins
- XZZX surface code— The XYZ\(^2\) hexagonal stabilizer code can be viewed as a concatenation of the \(YZZY\) surface code with the \([[2,1]]\) phase-flip repetition code [4].
- Quantum repetition code— The XYZ\(^2\) hexagonal stabilizer code can be viewed as a concatenation of the \(YZZY\) surface code with the \([[2,1]]\) phase-flip repetition code [4].
- Asymmetric quantum code— The XYZ\(^2\) hexagonal stabilizer code has high thresholds under biased noise [4].
Primary Hierarchy
Matching codeLattice stabilizer QLDPC Stabilizer Abelian topological Topological Hamiltonian-based QECC Quantum
Parents
The XYZ\(^2\) hexagonal stabilizer code can be viewed as a concatenation of the \(YZZY\) surface code with the \([[2,1]]\) phase-flip repetition code [4].
XYZ\(^2\) hexagonal stabilizer code
References
- [1]
- J. R. Wootton, “Hexagonal matching codes with two-body measurements”, Journal of Physics A: Mathematical and Theoretical 55, 295302 (2022) arXiv:2109.13308 DOI
- [2]
- B. Srivastava, A. Frisk Kockum, and M. Granath, “The XYZ2 hexagonal stabilizer code”, Quantum 6, 698 (2022) arXiv:2112.06036 DOI
- [3]
- K. Hammar, A. Orekhov, P. W. Hybelius, A. K. Wisakanto, B. Srivastava, A. F. Kockum, and M. Granath, “Error-rate-agnostic decoding of topological stabilizer codes”, Physical Review A 105, (2022) arXiv:2112.01977 DOI
- [4]
- B. Srivastava, Y. Xiao, A. F. Kockum, B. Criger, and M. Granath, “Sequential decoding of the XYZ\(^2\) hexagonal stabilizer code”, (2025) arXiv:2505.03691
Page edit log
- Basudha Srivastava (2022-03-16) — most recent
- Victor V. Albert (2022-03-16)
Cite as:
“XYZ\(^2\) hexagonal stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/xyz_hexagonal