Here is a list of all quantum codes that admit code capacity thresholds.
Name | Threshold |
---|---|
2D hyperbolic surface code | Bounds on code capacity thresholds using ML decoding can be obtained by mapping the effect of noise on the code to a statistical mechanical model [1].\(1.3\%\) for a phenomenological noise model for the \(\{4,5\}\)-hyperbolic surface code [2]. |
2D lattice stabilizer code | Noise thresholds can be formulated as anyon condensation transitions in a topological field theory [3], generalizing the mapping of the effect of noise on a code state to a statistical mechanical model [4–7]. Namely, the noise threshold for a noise channel \(\cal{E}\) acting on a 2D stabilizer state \(|\psi\rangle\) can be obtained from the properties of the resulting (mixed) state \(\mathcal{E}(|\psi\rangle\langle\psi|)\) [3,8–11]. |
2D subsystem color code | The threshold under ML decoding under depolarizing noise corresponds to the value of a critical point of a disordered spin model, calculated to be \(5.5(2)\%\) in Ref. [12].Erasure noise: \(50\%\) noise threshold error rate under erasure noise using optimal erasure decoder [13], and \(9.7\%\) and \(44\%\) using gauge-fixing decoders [14,15]. |
3D lattice stabilizer code | Applying Clifford deformations to various 3D stabilizer codes, including the 3D surface code, 3D color code, X-cube model code, and SFSL code, yields a \(50\%\) code capacity threshold under infinitely biased Pauli noise [16]. |
3D surface code | Independent \(X,Z\) noise: \(12\%\) for bit-flip and \(3\%\) for phase-flip channels with MWPM decoder for 3D toric code [17], and \(17.2\%\) and \(3.3\%\) with RG decoder for 3D toric code [18].Erasure noise: \(24.8\%\) with generalization of linear-time ML erasure decoder [19] to 3D surface codes [17]. No threshold was observed for the 3D welded surface code [17]. |
Bacon-Shor code | The number of check operators scales sublinearly with system size, so the Bacon-Shor codes alone do not exhibit a topological threshold in the \(m_1,m_2 \to \infty\) limit [20]. However, a threshold can be obtained from concatenated Bacon-Shor codes that are further restricted to planar geometries, whose recovery circuit is a subset of a circuit used by a larger bona-fide Bacon-Shor code [21]. This threshold differs from a concatenated threshold in that there are no long-range connectivity requirements.Lower bounds for the concatenated threshold of various small Bacon-Shor codes are tabulated in [22; Table I]. |
Chamon model code | Depolarizing noise: \(4.92\%\) with repetition-based decoder [23]. |
Checkerboard model code | Independent \(X,Z\) noise: \(\approx 7.5\%\), higher than 3D surface code and color code [24]. |
Clifford-deformed surface code (CDSC) | Depolarizing noise: the threshold under ML decoding corresponds to the value of a critical point of the weight-two (two-body) two-dimensional random-bond Ising model (RBIM) on the Nishimori line [4,25,26]. Utilizing this statistical mechanical mapping yields a phase diagram for a CDSC.A class of random CDSCs, parametrized by the probabilities \(\Pi_{XZ},~ \Pi_{YZ}\) of \(X\leftrightarrow Z\) and \(Y\leftrightarrow Z\) Pauli permutations, respectively, has \(50\%\) code capacity threshold at infinite \(Z\) bias. Certain translation-invariant CDSCs such as the XY code and the XZZX code also have \(50\%\) code capacity threshold at infinite \(Z\) bias.XZZX code and the \((0.5,\Pi_{YZ})\) random CDSCs have a \(50\%\) code capacity threshold for noise infinitely biased towards either Pauli-\(X\), \(Y\), or \(Z\) errors. |
Cluster-state code | Independent \(X,Z\) noise: \(p_X = 2.9\%\) under MWPM decoding [27]. The threshold under ML decoding corresponds to the value of a critical point of the 3D random-plaquette \(\mathbb{Z}_2\) gauge theory (3D-RPGM) via the statistical mechanical mapping [4], calculated to be \(3.3 \%\) [28] (see also [29]). |
Compass code | See [30; Sec. IV] for tables of code capacity threholds against spatially dependent and biased noise. |
Concatenated GKP code | \(0.599\) threshold displacement standard deviation for GKP-repetition code [31].\(0.59\) threshold displacement standard deviation for GKP-color code [32]. |
Concatenated Steane code | This family is one of the first to admit a concatenated threshold [33–39]; see the book [40]. |
Conformal-field theory (CFT) code | Threshold under dephasing depends on the structure of the conformal field theory, with the 1D critical Ising model admitting a finite threshold against certain dephasing noise [41]. |
Dihedral \(G=D_m\) quantum-double code | Behavior under \(X\)-type noise (namely, diffusion of certain anyons) for the \(G=D_4\) case is related to the phase diagram of a disordered net model [42]. |
Fibonacci string-net code | \(4.7\%\) for depolarizing noise, \(7.3\%\) for dephasing noise, and \(3.8\%\) for bit-flip noise with clustering decoder, assuming perfect measurements and gates [43]. See also Ref. [44].\(3.0\%\) for depolarizing noise, \(6.0\%\) for dephasing noise, and \(2.5\%\) for bit-flip noise with fusion-aware iterative MWPM decoder, assuming perfect measurements and gates [43]. |
Finite-dimensional quantum error-correcting code | Coherent information of the state under the action of a noise channel can be used to estimate the optimal threshold [45]. |
GKP-surface code | \(0.55\) (\(0.54\)) threshold displacement standard deviation for GKP-toric (GKP-surface) codes with no analog side information [46] ([47]). Using rectangular lattices accounts for asymmetric noise and improves the GKP-surface threshold to \(0.58\) [46].\(0.67\) threshold displacement standard deviation for GKP-XZZX-surface code [48].\(0.602\) threshold displacement standard deviation for GKP-surface codes with analog side information using MWPM closest point decoder [49]. |
Generalized bicycle (GB) code | Depolarizing noise: \(15\%\) for a family of 6-limited \([[2^{m+1}-2,2m]]\) GB codes with BP-OSD decoder [50; Appx. C]. |
Generalized five-squares code | Original five-squares code has a threshold of at least \(2\%\) against depolarizing noise [51]. |
Heptagon holographic code | \(~33\%\) under erasures using optimal erasure decoder for the finite-rate family, and \(50\%\) for the zero-rate family [52].Depolarizing noise: \(9.4\%\) using tensor-network decoder, and \(\approx 7\%\) using integer optimization decoder [53].\(18.985\%\) against depolarizing noise for zero-rate code under tensor-network decoder [54]. |
Holographic tensor-network code | The ideal holographic tensor-network code (perfect representation of AdS/CFT) should be able to protect a central bulk operator against erasures of half of the physical qubits on the boundary, in line with AdS-Rindler reconstruction [55].Holographic tensor-network codes are argued to have a algebraic threshold, for which the error rate scales polynomially (as opposed to exponentially) in the thermodynamic limit [56]. Such a threshold is governed by the underlying conformal field theory describing the boundary. |
Homological code | \(>0\%\) threshold with sweep decoder for lattice surface codes in various dimensions [57]. |
Honeycomb (6.6.6) color code | Independent \(X,Z\) noise: \(p_X = 7.8\%\) under message-passing decoder [58], \(8.7\%\) under projection decoder [59], \(\geq 6\%\) under rescaling decoder [60], \(9.0\%\) under Möbius matching decoder [61], \(10.1\%\) under MaxSAT-based decoder [62], and \(8.2\%\) under concatenated MWPM decoder [63]. The threshold under ML decoding corresponds to the value of a critical point of the two-dimensional three-body random-bond Ising model (RBIM) on the Nishimori line [25,64], calculated to be \(10.9(2)\%\) in Ref. [64] and \(10.97(1)\%\) in Ref. [65].Depolarizing channel: \(12.6\%\) under the restriction decoder [66] and the projection decoder [59], and \(\approx 14.5\%\) under AMBP4 decoding [67; Fig. 12]. |
Hypergraph product (HGP) code | Some thresholds were determined in Ref. [5].Bounds on code capacity thresholds using ML decoding can be obtained by mapping the effect of noise on the code to a statistical mechanical model [68]. For example, a threshold of \(7\%\) was obtained under independent \(X\) and \(Z\) noise for codes obtained from random \((3,4)\)-regular Gallager codes. |
Hyperinvariant tensor-network (HTN) code | \(19.1\%\) under depolarizing noise and \(50\%\) under erasure noise for a \(\{5,4\}\) tiling [69].\(40\%\) under erasure noise for constant-rate version of the code [69]. |
Lift-connected surface (LCS) code | \(2.9\%\) and \(3.2\%\) under phenomenological noise and BP+OSD decoding for two families of LCS codes. |
Loop toric code | Independent \(X,Z\) noise: \(2.117\%\) with Hastings decoder [70] and \(7.3\%\) with RG decoder for 4D surface code [18]. It is conjectured via a statistical-mechanical mapping that the optimal ML decoder yields a threshold of \(11.003\%\) [71]. |
NTRU-GKP code | A lower bound on the threshould for displacement noise can be formulated in terms of code parameters [72; Appx. B]. |
Pastawski-Yoshida-Harlow-Preskill (HaPPY) code | \(26\%\) for boundary erasure errors on the pentagon-hexagon HaPPY code under the greedy decoder [55].Lower bound of \(1/12 \approx 8.3\%\) for boundary erasure errors on the single-qubit HaPPY code under hierarchical recovery [55]. Numerical evidence indicates the threshold may be closer to \(50\%\).There is no threshold for the pentagon HaPPY code as a constant number of errors (four) can make bulk recovery impossible [55].\(16.3\%\) for boundary Pauli errors on the single-qubit HaPPY code with 3 layers using integer optimization decoder [73].\(50\%\) against biased Pauli noise for single-qubit HaPPY code under tensor-network decoder [54]. |
Quantum LDPC (QLDPC) code | Bounds on code capacity thresholds using ML decoding can be obtained by mapping the effect of noise on the code to a statistical mechanical model [4–6].Bounds on code capacity thresholds for various noise models exist in terms of stabilizer generator weights [74]. |
Quantum Tanner code | Independent \(X,Z\) noise: lower bound under potetial-based decoder [75; Corr. 15]. |
Quantum repetition code | Independent \(X\) noise: \(50\%\) with RG decoder for quantum repetition code arranged on a 1D or 2D lattice [18]. |
Quantum-double code | Behavior under particular \(X\)-type noise (namely, diffusion of an anyon that squares to the trivial anyon) is related to the phase diagram of a disordered \(D_4\) rotor model [42,76]. |
Qubit CSS code | Bounds on code capacity thresholds for various noise models exist in terms of stabilizer generator weights [5,74]. |
Qubit stabilizer code | Bounds on code capacity thresholds using ML decoding can be obtained by mapping the effect of noise on the code to a statistical mechanical model [4–7]. The AQEC relative entropy is related to the resulting threshold [77]. |
Six-qubit-tensor holographic code | \(18.8\%\) under depolarizing noise using tensor-network decoder [78]. |
Square-octagon (4.8.8) color code | Independent \(X,Z\) noise: \(p_X = 10.56(1)\%\) under IP decoder [79], \(8.87\%\) under matching decoder [80], \(7.60(2)\%\) under projection decoder [81], and \(8.7\%\) under two-copy surface-code decoder [82] (see [79; Table I]). The threshold under ML decoding corresponds to the value of a critical point of a two-dimensional three-body random-bond Ising model (RBIM) on the Nishimori line [25,64], calculated to be \(10.9(2)\%\) in Ref. [64] and \(10.925(5)\%\) in Ref. [65]. |
Subsystem qubit stabilizer code | For correlated Pauli noise, bounds can be obtained by mapping the effect of noise on the code to a statistical mechanical model [7]. |
Subsystem surface code | Independent \(X,Z\) noise: the threshold under ML decoding corresponds to the value of a critical point of the two-dimensional hexagonal-lattice random-bond Ising model (RBIM) on the Nishimori line [25,83], calculated to be around \(7\%\) in Ref. [84]. |
Surface-code-fragment (SCF) holographic code | \(7.1\%\) and \(8.2\%\) for even and odd raddi reduced-rate codes, respectively, under depolarizing using the integer optimization decoder [73]. |
Toric code | Independent \(X,Z\) noise: \(p_X = 10.31\%\) under MWPM decoding [85] (see also Ref. [86]), \(9.9\%\) under BP-OSD decoding [87], and \(8.9\%\) under GBP decoding [88]. The threshold under ML decoding corresponds to the value of a critical point of a two-dimensional random-bond Ising model (RBIM) on the Nishimori line [4,25], calculated to be \(10.94 \pm 0.02\%\) in Ref. [89], \(10.93(2)\%\) in Ref. [90], \(10.9187\%\) in Ref. [91], \(10.917(3)\%\) in Ref. [92], \(10.939(6)\%\) in Ref. [93], and estimated to be between \(10.9\%\) and \(11\%\) in Ref. [86]. Above values are for one type of noise only, and the ML threshold for combined \(X\) and \(Z\) noise is \(2p_X - p_X^2 \approx 20.6\%\). Thresholds for various lattices have been obtained in Ref. [94].Depolarizing noise: between \(17\%\) and \(18.5\%\) under BSV tensor-network decoding [86], \(14\%\) under GBP decoding [88], \(16.5\%\) under recursive MWPM [95], between \(16\%\) and \(17.5\%\) under AMBP4 (depending on whether surface or toric code is considered) [96], and between \(15\%\) and \(16\%\) under RG [97], Markov-chain [98], or MWPM [99] decoding. The threshold under ML decoding corresponds to the value of a critical point of the disordered eight-vertex Ising model, calculated to be \(18.9(3)\%\) [100] (see also APS Physics viewpoint [101]).Erasure noise: \(50\%\) for square tiling [102,103]. There is an inverse relationship between coordination number of the syndrome graph, with the threshold corresponding to a percolation transition [104].Correlated noise: \(10.04(6)\%\) under mildly correlated bit-flip noise [7].The toric code has a measurement threshold of one [105].Coherent noise: the threshold under ML decoding corresponds to the value of a critical point of a particular random-bond Ising model (RBIM) called the complex-coupled Ashkin-Teller model [106,107]. Another statistical mechanical mapping has been studied for \(X\)-type noise channels interpolating between coherent and incoherent noise [108]. |
Triangular surface code | \(10\%\) under either bit-flip or bit-phase noise for ideal syndrome measurements. The decoder used is a decoding graph with the same weight assigned to each edge, and Dijkstra's algorithm is used to computre the total weight of any path [109]. |
Twisted XZZX toric code | Depolarizing noise: \(17.5\%\) under AMBP4 decoding for the \([[(m^2+1)/2,1,m]]\) family [67; Fig. 10].Biased noise: between \(20\%\) and \(45\%\) at noise bias ranging from 1 to 10 under MWPM [110; Fig. 5]. |
Union-Jack color code | Independent \(X,Z\) noise: The threshold under ML decoding corresponds to the value of a critical point of a two-dimensional three-body random-bond Ising model (RBIM) on the Nishimori line [25,64], calculated to be \(10.9\%\) [111]. |
X-cube Floquet code | It is argued that this code has a threshold in Ref. [112]. |
X-cube model code | Independent \(X,Z\) noise: \(\approx 7.5\%\), higher than 3D surface code and color code [24]. |
XY surface code | \(50\%\) at infinite \(Z\) bias with maximum-likelihood decoder [113].\(18.7\%\) for standard depolarizing noise with maximum-likelihood decoder [113]. |
XYZ color code | \(50\%\) threshold for noise infinitely biased towards \(X\) or \(Y\) or \(Z\) errors using cellular-automaton decoder [114].Independent \(X,Y\) noise: threshold value of the sum of both noise probabilities is between \(9\%\) and \(14\%\), depending on the noise bias [114]. |
XYZ\(^2\) hexagonal stabilizer code | \(50\%\) for pure \(Z\), \(Y\), or \(Z\) noise under maximum-likelihood decoding.Threshold matches that of the \(XZZX\) code for various bias levels of \(X\), \(Y\), or \(Z\) biased noise under maximum-likelihood decoding.\(\approx 18\%\) for depolarizing noise under maximum-likelihood decoding. |
XZZX surface code | For large but finite \(X\)- or \(Z\)-biased noise, the code's thresholds exceed the zero-rate hashing bound. The difference of the threshold from the hashing bound exceeds \(2.9\%\) at a \(Z\) or \(X\) bias of 300.\(50\%\) threshold for noise infinitely biased towards \(X\) or \(Y\) or \(Z\) errors using a maximum-likelihood decoder.Depolarizing noise: \(18.7(1)\%\) under tensor-network decoder [115] and \(17.5\%\) under AMBP4 [96]. |
\([[9,1,3,3]]\) Nine-qubit Bacon-Shor code | \(2.02 \times 10^{-5}\) concatenated threshold for the recursively concatenated code [116]. |
References
- [1]
- Y. Jiang, I. Dumer, A. A. Kovalev, and L. P. Pryadko, “Duality and free energy analyticity bounds for few-body Ising models with extensive homology rank”, Journal of Mathematical Physics 60, (2019) arXiv:1805.00644 DOI
- [2]
- N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna, and B. M. Terhal, “Hyperbolic and semi-hyperbolic surface codes for quantum storage”, Quantum Science and Technology 2, 035007 (2017) arXiv:1703.00590 DOI
- [3]
- Y. Bao, R. Fan, A. Vishwanath, and E. Altman, “Mixed-state topological order and the errorfield double formulation of decoherence-induced transitions”, (2023) arXiv:2301.05687
- [4]
- E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory”, Journal of Mathematical Physics 43, 4452 (2002) arXiv:quant-ph/0110143 DOI
- [5]
- A. A. Kovalev and L. P. Pryadko, “Fault tolerance of quantum low-density parity check codes with sublinear distance scaling”, Physical Review A 87, (2013) arXiv:1208.2317 DOI
- [6]
- A. A. Kovalev and L. P. Pryadko, “Spin glass reflection of the decoding transition for quantum error correcting codes”, (2014) arXiv:1311.7688
- [7]
- C. T. Chubb and S. T. Flammia, “Statistical mechanical models for quantum codes with correlated noise”, Annales de l’Institut Henri Poincaré D, Combinatorics, Physics and their Interactions 8, 269 (2021) arXiv:1809.10704 DOI
- [8]
- J. Y. Lee, C.-M. Jian, and C. Xu, “Quantum Criticality Under Decoherence or Weak Measurement”, PRX Quantum 4, (2023) arXiv:2301.05238 DOI
- [9]
- R. Fan, Y. Bao, E. Altman, and A. Vishwanath, “Diagnostics of Mixed-State Topological Order and Breakdown of Quantum Memory”, PRX Quantum 5, (2024) arXiv:2301.05689 DOI
- [10]
- Y.-H. Chen and T. Grover, “Separability Transitions in Topological States Induced by Local Decoherence”, Physical Review Letters 132, (2024) arXiv:2309.11879 DOI
- [11]
- K. Su, Z. Yang, and C.-M. Jian, “Tapestry of dualities in decohered quantum error correction codes”, Physical Review B 110, (2024) arXiv:2401.17359 DOI
- [12]
- R. S. Andrist, H. Bombin, H. G. Katzgraber, and M. A. Martin-Delgado, “Optimal error correction in topological subsystem codes”, Physical Review A 85, (2012) arXiv:1204.1838 DOI
- [13]
- H. M. Solanki and P. K. Sarvepalli, “Decoding Topological Subsystem Color Codes Over the Erasure Channel Using Gauge Fixing”, IEEE Transactions on Communications 71, 4181 (2023) DOI
- [14]
- H. M. Solanki and P. K. Sarvepalli, “Decoding Topological Subsystem Color Codes Over the Erasure Channel using Gauge Fixing”, (2022) arXiv:2111.14594
- [15]
- H. M. Solanki and P. Kiran Sarvepalli, “Correcting Erasures with Topological Subsystem Color Codes”, 2020 IEEE Information Theory Workshop (ITW) 1 (2021) DOI
- [16]
- E. Huang, A. Pesah, C. T. Chubb, M. Vasmer, and A. Dua, “Tailoring Three-Dimensional Topological Codes for Biased Noise”, PRX Quantum 4, (2023) arXiv:2211.02116 DOI
- [17]
- A. Kulkarni and P. K. Sarvepalli, “Decoding the three-dimensional toric codes and welded codes on cubic lattices”, Physical Review A 100, (2019) arXiv:1808.03092 DOI
- [18]
- K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal, “Renormalization Group Decoder for a Four-Dimensional Toric Code”, IEEE Transactions on Information Theory 65, 2545 (2019) arXiv:1708.09286 DOI
- [19]
- N. Delfosse and G. Zémor, “Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel”, Physical Review Research 2, (2020) arXiv:1703.01517 DOI
- [20]
- N. C. Brown, M. Newman, and K. R. Brown, “Handling leakage with subsystem codes”, New Journal of Physics 21, 073055 (2019) arXiv:1903.03937 DOI
- [21]
- C. Gidney and D. Bacon, “Less Bacon More Threshold”, (2023) arXiv:2305.12046
- [22]
- P. Aliferis and A. W. Cross, “Subsystem Fault Tolerance with the Bacon-Shor Code”, Physical Review Letters 98, (2007) arXiv:quant-ph/0610063 DOI
- [23]
- J. Zhao, Y.-C. Wu, and G.-P. Guo, “Quantum memory error correction computation based on Chamon model”, (2023) arXiv:2303.05267
- [24]
- H. Song, J. Schönmeier-Kromer, K. Liu, O. Viyuela, L. Pollet, and M. A. Martin-Delgado, “Optimal Thresholds for Fracton Codes and Random Spin Models with Subsystem Symmetry”, Physical Review Letters 129, (2022) arXiv:2112.05122 DOI
- [25]
- H. Nishimori, “Geometry-Induced Phase Transition in the ±JIsing Model”, Journal of the Physical Society of Japan 55, 3305 (1986) DOI
- [26]
- A. Dua, A. Kubica, L. Jiang, S. T. Flammia, and M. J. Gullans, “Clifford-Deformed Surface Codes”, PRX Quantum 5, (2024) arXiv:2201.07802 DOI
- [27]
- R. Raussendorf, J. Harrington, and K. Goyal, “A fault-tolerant one-way quantum computer”, Annals of Physics 321, 2242 (2006) arXiv:quant-ph/0510135 DOI
- [28]
- T. Ohno, G. Arakawa, I. Ichinose, and T. Matsui, “Phase structure of the random-plaquette gauge model: accuracy threshold for a toric quantum memory”, Nuclear Physics B 697, 462 (2004) arXiv:quant-ph/0401101 DOI
- [29]
- K. Takeda, T. Sasamoto, and H. Nishimori, “Exact location of the multicritical point for finite-dimensional spin glasses: a conjecture”, Journal of Physics A: Mathematical and General 38, 3751 (2005) arXiv:cond-mat/0501372 DOI
- [30]
- M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, “2D Compass Codes”, Physical Review X 9, (2019) arXiv:1809.01193 DOI
- [31]
- M. P. Stafford and N. C. Menicucci, “Biased Gottesman-Kitaev-Preskill repetition code”, Physical Review A 108, (2023) arXiv:2212.11397 DOI
- [32]
- J. Zhang, J. Zhao, Y.-C. Wu, and G.-P. Guo, “Quantum error correction with the color-Gottesman-Kitaev-Preskill code”, Physical Review A 104, (2021) arXiv:2112.14447 DOI
- [33]
- E. Knill, R. Laflamme, and W. H. Zurek, “Resilient quantum computation: error models and thresholds”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 365 (1998) arXiv:quant-ph/9702058 DOI
- [34]
- A. M. Steane, “Efficient fault-tolerant quantum computing”, Nature 399, 124 (1999) arXiv:quant-ph/9809054 DOI
- [35]
- A. M. Steane, “Overhead and noise threshold of fault-tolerant quantum error correction”, Physical Review A 68, (2003) arXiv:quant-ph/0207119 DOI
- [36]
- K. M. Svore, B. M. Terhal, and D. P. DiVincenzo, “Local fault-tolerant quantum computation”, Physical Review A 72, (2005) arXiv:quant-ph/0410047 DOI
- [37]
- P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for concatenated distance-3 codes”, (2005) arXiv:quant-ph/0504218
- [38]
- P. Aliferis, “Level Reduction and the Quantum Threshold Theorem”, (2011) arXiv:quant-ph/0703230
- [39]
- K. M. Svore, D. P. DiVincenzo, and B. M. Terhal, “Noise Threshold for a Fault-Tolerant Two-Dimensional Lattice Architecture”, (2006) arXiv:quant-ph/0604090
- [40]
- D. Gottesman. Surviving as a quantum computer in a classical world (2024) URL
- [41]
- S. Sang, T. H. Hsieh, and Y. Zou, “Approximate quantum error correcting codes from conformal field theory”, (2024) arXiv:2406.09555
- [42]
- P. Sala, J. Alicea, and R. Verresen, “Decoherence and wavefunction deformation of \(D_4\) non-Abelian topological order”, (2024) arXiv:2409.12948
- [43]
- A. Schotte, G. Zhu, L. Burgelman, and F. Verstraete, “Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code”, (2021) arXiv:2012.04610
- [44]
- S. Burton, C. G. Brell, and S. T. Flammia, “Classical simulation of quantum error correction in a Fibonacci anyon code”, Physical Review A 95, (2017) arXiv:1506.03815 DOI
- [45]
- L. Colmenarez, Z.-M. Huang, S. Diehl, and M. Müller, “Accurate optimal quantum error correction thresholds from coherent information”, Physical Review Research 6, (2024) arXiv:2312.06664 DOI
- [46]
- C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
- [47]
- K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, “High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction”, Physical Review X 8, (2018) arXiv:1712.00294 DOI
- [48]
- J. Zhang, Y.-C. Wu, and G.-P. Guo, “Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX surface code”, Physical Review A 107, (2023) arXiv:2207.04383 DOI
- [49]
- M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
- [50]
- P. Panteleev and G. Kalachev, “Degenerate Quantum LDPC Codes With Good Finite Length Performance”, Quantum 5, 585 (2021) arXiv:1904.02703 DOI
- [51]
- M. Suchara, S. Bravyi, and B. Terhal, “Constructions and noise threshold of topological subsystem codes”, Journal of Physics A: Mathematical and Theoretical 44, 155301 (2011) arXiv:1012.0425 DOI
- [52]
- R. J. Harris, N. A. McMahon, G. K. Brennen, and T. M. Stace, “Calderbank-Shor-Steane holographic quantum error-correcting codes”, Physical Review A 98, (2018) arXiv:1806.06472 DOI
- [53]
- T. Farrelly, R. J. Harris, N. A. McMahon, and T. M. Stace, “Parallel decoding of multiple logical qubits in tensor-network codes”, (2020) arXiv:2012.07317
- [54]
- J. Fan, M. Steinberg, A. Jahn, C. Cao, and S. Feld, “Overcoming the Zero-Rate Hashing Bound with Holographic Quantum Error Correction”, (2024) arXiv:2408.06232
- [55]
- F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence”, Journal of High Energy Physics 2015, (2015) arXiv:1503.06237 DOI
- [56]
- N. Bao, C. Cao, and G. Zhu, “Deconfinement and error thresholds in holography”, Physical Review D 106, (2022) arXiv:2202.04710 DOI
- [57]
- A. M. Kubica, The ABCs of the Color Code: A Study of Topological Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter, California Institute of Technology, 2018 DOI
- [58]
- P. Sarvepalli and R. Raussendorf, “Efficient decoding of topological color codes”, Physical Review A 85, (2012) arXiv:1111.0831 DOI
- [59]
- N. Delfosse, “Decoding color codes by projection onto surface codes”, Physical Review A 89, (2014) arXiv:1308.6207 DOI
- [60]
- P. Parrado-Rodríguez, M. Rispler, and M. Müller, “Rescaling decoder for two-dimensional topological quantum color codes on 4.8.8 lattices”, Physical Review A 106, (2022) arXiv:2112.09584 DOI
- [61]
- K. Sahay and B. J. Brown, “Decoder for the Triangular Color Code by Matching on a Möbius Strip”, PRX Quantum 3, (2022) arXiv:2108.11395 DOI
- [62]
- L. Berent, L. Burgholzer, P.-J. H. S. Derks, J. Eisert, and R. Wille, “Decoding quantum color codes with MaxSAT”, Quantum 8, 1506 (2024) arXiv:2303.14237 DOI
- [63]
- S.-H. Lee, A. Li, and S. D. Bartlett, “Color code decoder with improved scaling for correcting circuit-level noise”, (2024) arXiv:2404.07482
- [64]
- H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado, “Error Threshold for Color Codes and Random Three-Body Ising Models”, Physical Review Letters 103, (2009) arXiv:0902.4845 DOI
- [65]
- M. Ohzeki, “Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices”, Physical Review E 80, (2009) arXiv:0903.2102 DOI
- [66]
- C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, “Triangular color codes on trivalent graphs with flag qubits”, New Journal of Physics 22, 023019 (2020) arXiv:1911.00355 DOI
- [67]
- K.-Y. Kuo and C.-Y. Lai, “Comparison of 2D topological codes and their decoding performances”, 2022 IEEE International Symposium on Information Theory (ISIT) (2022) arXiv:2202.06612 DOI
- [68]
- A. A. Kovalev, S. Prabhakar, I. Dumer, and L. P. Pryadko, “Numerical and analytical bounds on threshold error rates for hypergraph-product codes”, Physical Review A 97, (2018) arXiv:1804.01950 DOI
- [69]
- M. Steinberg, J. Fan, R. J. Harris, D. Elkouss, S. Feld, and A. Jahn, “Far from Perfect: Quantum Error Correction with (Hyperinvariant) Evenbly Codes”, (2024) arXiv:2407.11926
- [70]
- N. P. Breuckmann, K. Duivenvoorden, D. Michels, and B. M. Terhal, “Local Decoders for the 2D and 4D Toric Code”, (2016) arXiv:1609.00510
- [71]
- K. Takeda and H. Nishimori, “Self-dual random-plaquette gauge model and the quantum toric code”, Nuclear Physics B 686, 377 (2004) arXiv:hep-th/0310279 DOI
- [72]
- J. Conrad, J. Eisert, and J.-P. Seifert, “Good Gottesman-Kitaev-Preskill codes from the NTRU cryptosystem”, Quantum 8, 1398 (2024) arXiv:2303.02432 DOI
- [73]
- R. J. Harris, E. Coupe, N. A. McMahon, G. K. Brennen, and T. M. Stace, “Decoding holographic codes with an integer optimization decoder”, Physical Review A 102, (2020) arXiv:2008.10206 DOI
- [74]
- I. Dumer, A. A. Kovalev, and L. P. Pryadko, “Thresholds for Correcting Errors, Erasures, and Faulty Syndrome Measurements in Degenerate Quantum Codes”, Physical Review Letters 115, (2015) arXiv:1412.6172 DOI
- [75]
- S. Gu, C. A. Pattison, and E. Tang, “An efficient decoder for a linear distance quantum LDPC code”, (2022) arXiv:2206.06557
- [76]
- P. Sala and R. Verresen, “Stability and Loop Models from Decohering Non-Abelian Topological Order”, (2024) arXiv:2409.12230
- [77]
- Y. Zhao and D. E. Liu, “Extracting error thresholds through the framework of approximate quantum error correction condition”, Physical Review Research 6, (2024) arXiv:2312.16991 DOI
- [78]
- T. Farrelly, R. J. Harris, N. A. McMahon, and T. M. Stace, “Tensor-Network Codes”, Physical Review Letters 127, (2021) arXiv:2009.10329 DOI
- [79]
- A. J. Landahl, J. T. Anderson, and P. R. Rice, “Fault-tolerant quantum computing with color codes”, (2011) arXiv:1108.5738
- [80]
- D. S. Wang, A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg, “Graphical algorithms and threshold error rates for the 2d colour code”, (2009) arXiv:0907.1708
- [81]
- A. M. Stephens, “Efficient fault-tolerant decoding of topological color codes”, (2014) arXiv:1402.3037
- [82]
- Duclos-Cianci, Guillaume, Héctor Bombın, and David Poulin. "Fast decoding algorithm for subspace and subsystem color codes and local equivalence of topological phases." Personal communication (2011).
- [83]
- S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara, “Subsystem surface codes with three-qubit check operators”, (2013) arXiv:1207.1443
- [84]
- S. L. A. de Queiroz, “Multicritical point of Ising spin glasses on triangular and honeycomb lattices”, Physical Review B 73, (2006) arXiv:cond-mat/0510816 DOI
- [85]
- C. Wang, J. Harrington, and J. Preskill, “Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory”, Annals of Physics 303, 31 (2003) arXiv:quant-ph/0207088 DOI
- [86]
- S. Bravyi, M. Suchara, and A. Vargo, “Efficient algorithms for maximum likelihood decoding in the surface code”, Physical Review A 90, (2014) arXiv:1405.4883 DOI
- [87]
- J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across the quantum low-density parity-check code landscape”, Physical Review Research 2, (2020) arXiv:2005.07016 DOI
- [88]
- J. Old and M. Rispler, “Generalized Belief Propagation Algorithms for Decoding of Surface Codes”, Quantum 7, 1037 (2023) arXiv:2212.03214 DOI
- [89]
- A. Honecker, M. Picco, and P. Pujol, “Universality Class of the Nishimori Point in the 2D±JRandom-Bond Ising Model”, Physical Review Letters 87, (2001) arXiv:cond-mat/0010143 DOI
- [90]
- F. Merz and J. T. Chalker, “Two-dimensional random-bond Ising model, free fermions, and the network model”, Physical Review B 65, (2002) arXiv:cond-mat/0106023 DOI
- [91]
- M. Ohzeki, “Locations of multicritical points for spin glasses on regular lattices”, Physical Review E 79, (2009) arXiv:0811.0464 DOI
- [92]
- F. Parisen Toldin, A. Pelissetto, and E. Vicari, “Strong-Disorder Paramagnetic-Ferromagnetic Fixed Point in the Square-Lattice ±J Ising Model”, Journal of Statistical Physics 135, 1039 (2009) arXiv:0811.2101 DOI
- [93]
- S. L. A. de Queiroz, “Location and properties of the multicritical point in the Gaussian and±JIsing spin glasses”, Physical Review B 79, (2009) arXiv:0902.4153 DOI
- [94]
- K. Fujii and Y. Tokunaga, “Error and loss tolerances of surface codes with general lattice structures”, Physical Review A 86, (2012) arXiv:1202.2743 DOI
- [95]
- A. deMarti iOlius, J. E. Martinez, P. Fuentes, and P. M. Crespo, “Performance enhancement of surface codes via recursive minimum-weight perfect-match decoding”, Physical Review A 108, (2023) arXiv:2212.11632 DOI
- [96]
- K.-Y. Kuo and C.-Y. Lai, “Exploiting degeneracy in belief propagation decoding of quantum codes”, npj Quantum Information 8, (2022) arXiv:2104.13659 DOI
- [97]
- G. Duclos-Cianci and D. Poulin, “Fast Decoders for Topological Quantum Codes”, Physical Review Letters 104, (2010) arXiv:0911.0581 DOI
- [98]
- A. Hutter, J. R. Wootton, and D. Loss, “Efficient Markov chain Monte Carlo algorithm for the surface code”, Physical Review A 89, (2014) arXiv:1302.2669 DOI
- [99]
- D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L. Hollenberg, “Threshold error rates for the toric and surface codes”, (2009) arXiv:0905.0531
- [100]
- H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and M. A. Martin-Delgado, “Strong Resilience of Topological Codes to Depolarization”, Physical Review X 2, (2012) arXiv:1202.1852 DOI
- [101]
- D. Gottesman, “Keeping One Step Ahead of Errors”, Physics 5, (2012) DOI
- [102]
- T. M. Stace, S. D. Barrett, and A. C. Doherty, “Thresholds for Topological Codes in the Presence of Loss”, Physical Review Letters 102, (2009) arXiv:0904.3556 DOI
- [103]
- T. M. Stace and S. D. Barrett, “Error correction and degeneracy in surface codes suffering loss”, Physical Review A 81, (2010) arXiv:0912.1159 DOI
- [104]
- N. Nickerson and H. Bombín, “Measurement based fault tolerance beyond foliation”, (2018) arXiv:1810.09621
- [105]
- D. Lee and B. Yoshida, “Randomly Monitored Quantum Codes”, (2024) arXiv:2402.00145
- [106]
- J. Behrends and B. Béri, “Statistical mechanical mapping and maximum-likelihood thresholds for the surface code under generic single-qubit coherent errors”, (2024) arXiv:2410.22436
- [107]
- Y. Bao and S. Anand, “Phases of decodability in the surface code with unitary errors”, (2024) arXiv:2411.05785
- [108]
- J. Behrends and B. Béri, “The surface code under generic \(X\)-error channels: Statistical mechanics, error thresholds, and errorfield double phenomenology”, (2024) arXiv:2412.21055
- [109]
- T. J. Yoder and I. H. Kim, “The surface code with a twist”, Quantum 1, 2 (2017) arXiv:1612.04795 DOI
- [110]
- Q. Xu, N. Mannucci, A. Seif, A. Kubica, S. T. Flammia, and L. Jiang, “Tailored XZZX codes for biased noise”, (2022) arXiv:2203.16486
- [111]
- H. G. Katzgraber, H. Bombin, R. S. Andrist, and M. A. Martin-Delgado, “Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group”, Physical Review A 81, (2010) arXiv:0910.0573 DOI
- [112]
- Z. Zhang, D. Aasen, and S. Vijay, “The X-Cube Floquet Code”, (2022) arXiv:2211.05784
- [113]
- D. K. Tuckett, A. S. Darmawan, C. T. Chubb, S. Bravyi, S. D. Bartlett, and S. T. Flammia, “Tailoring Surface Codes for Highly Biased Noise”, Physical Review X 9, (2019) arXiv:1812.08186 DOI
- [114]
- J. F. S. Miguel, D. J. Williamson, and B. J. Brown, “A cellular automaton decoder for a noise-bias tailored color code”, Quantum 7, 940 (2023) arXiv:2203.16534 DOI
- [115]
- D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, “Ultrahigh Error Threshold for Surface Codes with Biased Noise”, Physical Review Letters 120, (2018) arXiv:1708.08474 DOI
- [116]
- F. M. Spedalieri and V. P. Roychowdhury, “Latency in local, two-dimensional, fault-tolerant quantum computing”, (2008) arXiv:0805.4213