[Jump to code hierarchy]

GKP-surface code[1,2]

Description

A concatenated code whose outer code is a GKP code and whose inner code is a toric surface code [2], rotated surface code [1,36], or XZZX surface code [7].

Rate

The error threshold under ML decoding of GKP-rotated-surface codes comes close to \(\sigma\approx 0.6065\), at which the best-known lower bound [8] on the capacity vanishes [9].

Decoding

Decoder for GKP-toric code [2].MWPM closest point decoder [6].

Code Capacity Threshold

\(0.55\) (\(0.54\)) threshold displacement standard deviation for GKP-toric (GKP-surface) codes with no analog side information [2] ([1]). Using rectangular lattices accounts for asymmetric noise and improves the GKP-surface threshold to \(0.58\) [2].\(0.67\) threshold displacement standard deviation for GKP-XZZX-surface code [7].\(0.602\) threshold displacement standard deviation for GKP-surface codes with analog side information using MWPM closest point decoder [6].

Threshold

The threshold under displacement noise using ML decoding of GKP-toric codes corresponds to the value of a critical point of a 3D compact QED model in the presence of a quenched random gauge field [2]. The GKP-toric decoder yields a threshold displacement standard deviation of \(\sigma = 0.243\) [2], but this noise model did not properly take into account error propagation [3].\(11.2\)dB of squeezing under displacement noise using MWPM decoding for GKP-rotated-surface codes [3,5]. The error threshold under ML decoding of GKP-rotated-surface codes comes close to \(\sigma\approx 0.6065\), at which the best-known lower bound [8] on the capacity vanishes [9].

Cousins

References

[1]
K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, “High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction”, Physical Review X 8, (2018) arXiv:1712.00294 DOI
[2]
C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
[3]
K. Noh and C. Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code”, Physical Review A 101, (2020) arXiv:1908.03579 DOI
[4]
M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-Nielsen, and U. L. Andersen, “Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture”, PRX Quantum 2, (2021) arXiv:2101.03014 DOI
[5]
K. Noh, C. Chamberland, and F. G. S. L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code”, PRX Quantum 3, (2022) arXiv:2103.06994 DOI
[6]
M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
[7]
J. Zhang, Y.-C. Wu, and G.-P. Guo, “Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX surface code”, Physical Review A 107, (2023) arXiv:2207.04383 DOI
[8]
A. S. Holevo and R. F. Werner, “Evaluating capacities of Bosonic Gaussian channels”, (1999) arXiv:quant-ph/9912067
[9]
M. Lin and K. Noh, “Exploring the quantum capacity of a Gaussian random displacement channel using Gottesman-Kitaev-Preskill codes and maximum likelihood decoding”, (2024) arXiv:2411.04277
[10]
J. C. M. de la Fuente, T. D. Ellison, M. Cheng, and D. J. Williamson, “Topological stabilizer models on continuous variables”, (2024) arXiv:2411.04993
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: gkp_surface_concatenated

Cite as:
“GKP-surface code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/gkp_surface_concatenated
BibTeX:
@incollection{eczoo_gkp_surface_concatenated, title={GKP-surface code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/gkp_surface_concatenated} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/gkp_surface_concatenated

Cite as:

“GKP-surface code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/gkp_surface_concatenated

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/stabilizer/lattice/gkp_surface_concatenated.yml.