Alternative names: Checkerboard code, Medial surface code, Rectified surface code.
Description
Variant of the surface code defined on a square lattice that has been rotated 45 degrees such that qubits are on vertices, and both \(X\)- and \(Z\)-type check operators occupy plaquettes in an alternating checkerboard pattern.
Stabilizer generators for this code are shown in Figure I.
Protection
The \([[L^2,1,L]]\) planar rotated surface code variant [1] includes the \([[9,1,3]]\) surface-17 code, named as such because 8 ancilla qubits are used for check operator measurements alongside the 9 physical qubits. The \([[L^2,2,L]]\) rotated toric code includes the \([[4,2,2]]\) code as its smallest example.Decoding
Only certain syndrome extraction schedules are distance-preserving [4].Local neural-network using 3D convolutions, combined with a separate global decoder [5].Iterative CNOT decoder [6].Fault-tolerant BP (FTBP) decoder [7].Fault Tolerance
A particular choice of CNOT gates during syndrome extraction is required to avoid hook errors and be fault-tolerant to syndrome qubit errors [4,8,9].Threshold
Thresholds for various amounts of erasure, Pauli, correlated, and measurement noise are known [10,11].Cousins
- Hypergraph product (HGP) code— The rotated code can be obtained from hypergraph product of two cyclic linear binary codes with palindromic generator polynomial [3; Exam. 7].
- Cyclic linear binary code— The rotated code can be obtained from hypergraph product of two cyclic linear binary codes with palindromic generator polynomial [3; Exam. 7].
- Heavy-hexagon code— A rotated surface code can be mapped onto a heavy square lattice, resulting in a code similar to the heavy-hexagon code [12].
- Plaquette Ising code— The plaquette Ising model can be thought of as the rotated surface code whose \(X\)-type stabilizer generators have been converted to \(Z\)-type stabilizer generators.
- Concatenated cat code— Cat codes have been concatenated with rotated surface codes [13].
- GKP-surface code— GKP codes have been concatenated with rotated surface codes [14–18].
- Tensor-network code— A tensor-network based modification of the rotated surface code improves performance against depolarizing noise by \(\approx 2\%\) [19].
- Ball-Verstraete-Cirac (BVC) code— An appropriately chosen stabilizer generator set for the BVC code contains the stabilizers of the rotated surface code [20].
- 3D surface code— There exists a rotated version of the 3D surface code, akin to the (2D) rotated surface code [21].
- XZZX surface code— The XZZX code is obtained from the rotated surface code by applying Hadamard gates on a subset of qubits such that \(XXXX\) and \(ZZZZ\) generators are both mapped to \(XZXZ\). Both rotated and XZZX codes offer improved performance over the original surface code for biased noise [22].
- Compass code— The surface-density compass code family interpolates between Bacon-Shor codes and rotated surface codes.
- Subsystem rotated surface code
Member of code lists
- 2D stabilizer codes
- Concatenated quantum codes and friends
- Hamiltonian-based codes
- Quantum codes
- Quantum codes based on homological products
- Quantum codes with fault-tolerant gadgets
- Quantum codes with notable decoders
- Quantum codes with other thresholds
- Quantum CSS codes
- Quantum LDPC codes
- Single-shot codes
- Stabilizer codes
- Surface code and friends
- Topological codes
Primary Hierarchy
Generalized homological-product qubit CSS codeGeneralized homological-product QLDPC CSS Stabilizer Hamiltonian-based QECC Quantum
Kitaev surface codeCDSC Twist-defect surface Lattice stabilizer Generalized homological-product QLDPC CSS Stabilizer Qubit Abelian topological Topological Hamiltonian-based QECC Quantum
Parents
The lattice of the rotated surface code can be obtained by taking the medial graph of the surface code lattice (treated as a graph) and applying a similar procedure to construct the check operators [1,23][24; Fig. 8]. Applying the quantum Tanner transformation to the surface code yields the rotated surface code [25,26]. The rotated surface code presents certain savings over the original surface code [27].
Hierarchical codes are concatenations of constant-rate QLDPC codes with rotated surface codes.
Yoked surface codes are concatenations of QMDPC codes with rotated surface codes.
Rotated surface code
Children
The \([[4,2,2]]\) code is the smallest rotated toric code. The subcodes \(\{|\overline{10}\rangle,|\overline{11}\rangle\}\) [28], \(\{|\overline{00}\rangle,|\overline{10}\rangle\}\) [29], \(\{|\overline{00}\rangle,|\overline{01}\rangle\}\) [30], and \(\{|\overline{00}\rangle,|\overline{11}\rangle\}\) [31] are small planar rotated surface codes.
References
- [1]
- H. Bombin and M. A. Martin-Delgado, “Optimal resources for topological two-dimensional stabilizer codes: Comparative study”, Physical Review A 76, (2007) arXiv:quant-ph/0703272 DOI
- [2]
- J. T. Anderson, “Homological Stabilizer Codes”, (2011) arXiv:1107.3502
- [3]
- A. A. Kovalev and L. P. Pryadko, “Improved quantum hypergraph-product LDPC codes”, 2012 IEEE International Symposium on Information Theory Proceedings 348 (2012) arXiv:1202.0928 DOI
- [4]
- Y. Tomita and K. M. Svore, “Low-distance surface codes under realistic quantum noise”, Physical Review A 90, (2014) arXiv:1404.3747 DOI
- [5]
- C. Chamberland, L. Goncalves, P. Sivarajah, E. Peterson, and S. Grimberg, “Techniques for combining fast local decoders with global decoders under circuit-level noise”, Quantum Science and Technology 8, 045011 (2023) arXiv:2208.01178 DOI
- [6]
- K. H. Wan, M. Webber, A. G. Fowler, and W. K. Hensinger, “An iterative transversal CNOT decoder”, (2024) arXiv:2407.20976
- [7]
- K.-Y. Kuo and C.-Y. Lai, “Fault-Tolerant Belief Propagation for Practical Quantum Memory”, (2024) arXiv:2409.18689
- [8]
- E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory”, Journal of Mathematical Physics 43, 4452 (2002) arXiv:quant-ph/0110143 DOI
- [9]
- A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation”, Physical Review A 86, (2012) arXiv:1208.0928 DOI
- [10]
- S. Gu, Y. Vaknin, A. Retzker, and A. Kubica, “Optimizing quantum error correction protocols with erasure qubits”, (2024) arXiv:2408.00829
- [11]
- J. F. Kam, S. Gicev, K. Modi, A. Southwell, and M. Usman, “Detrimental non-Markovian errors for surface code memory”, (2024) arXiv:2410.23779
- [12]
- C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross, “Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits”, Physical Review X 10, (2020) arXiv:1907.09528 DOI
- [13]
- C. Chamberland et al., “Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes”, PRX Quantum 3, (2022) arXiv:2012.04108 DOI
- [14]
- K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, “High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction”, Physical Review X 8, (2018) arXiv:1712.00294 DOI
- [15]
- K. Noh and C. Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code”, Physical Review A 101, (2020) arXiv:1908.03579 DOI
- [16]
- M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-Nielsen, and U. L. Andersen, “Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture”, PRX Quantum 2, (2021) arXiv:2101.03014 DOI
- [17]
- K. Noh, C. Chamberland, and F. G. S. L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code”, PRX Quantum 3, (2022) arXiv:2103.06994 DOI
- [18]
- M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
- [19]
- T. Farrelly, D. K. Tuckett, and T. M. Stace, “Local tensor-network codes”, New Journal of Physics 24, 043015 (2022) arXiv:2109.11996 DOI
- [20]
- Derby, Charles. Compact fermion to qubit mappings for quantum simulation. Diss. UCL (University College London), 2023.
- [21]
- E. Huang, A. Pesah, C. T. Chubb, M. Vasmer, and A. Dua, “Tailoring Three-Dimensional Topological Codes for Biased Noise”, PRX Quantum 4, (2023) arXiv:2211.02116 DOI
- [22]
- D. Forlivesi, L. Valentini, and M. Chiani, “Logical Error Rates of XZZX and Rotated Quantum Surface Codes”, (2023) arXiv:2312.17057
- [23]
- N. Delfosse, P. Iyer, and D. Poulin, “Generalized surface codes and packing of logical qubits”, (2016) arXiv:1606.07116
- [24]
- R. Sarkar and T. J. Yoder, “A graph-based formalism for surface codes and twists”, Quantum 8, 1416 (2024) arXiv:2101.09349 DOI
- [25]
- Nikolas P. Breuckmann, private communication, 2022
- [26]
- Anthony Leverrier, Mapping the toric code to the rotated toric code, 2022.
- [27]
- A. R. O’Rourke and S. Devitt, “Compare the Pair: Rotated vs. Unrotated Surface Codes at Equal Logical Error Rates”, (2024) arXiv:2409.14765
- [28]
- A. Erhard et al., “Entangling logical qubits with lattice surgery”, Nature 589, 220 (2021) arXiv:2006.03071 DOI
- [29]
- C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff, “Repeated quantum error detection in a surface code”, Nature Physics 16, 875 (2020) arXiv:1912.09410 DOI
- [30]
- “Exponential suppression of bit or phase errors with cyclic error correction”, Nature 595, 383 (2021) arXiv:2102.06132 DOI
- [31]
- J. F. Marques et al., “Logical-qubit operations in an error-detecting surface code”, Nature Physics 18, 80 (2021) arXiv:2102.13071 DOI
Page edit log
- Eric Huang (2024-03-14) — most recent
- Marcus P da Silva (2023-03-20)
- Victor V. Albert (2022-07-30)
Cite as:
“Rotated surface code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/rotated_surface