Description
Quantum lattice code for a non-degenerate lattice, thereby admitting a finite-dimensional logical subspace. Codes on \(n\) modes can be constructed from lattices with \(2n\)-dimensional full-rank Gram matrices \(A\).
The centralizer for the stabilizer group within the displacement operators case can be identified with the symplectic dual lattice \({\mathcal{L}}^{\perp}\) (i.e. all points in \(\mathbb{R}^{2n}\) that have integer symplectic inner product with all points in \({\mathcal{L}}\) ), such that logical operations are identified with the dual quotients \({\mathcal{L}}^{\perp}/{\mathcal{L}}\). The size of this dual quotient is the determinant of the Gram matrix, yielding the logical dimension \(d=\sqrt{\| \det{A}\|}\) [1]. Stabilizer generator matrices equivalent under symplectic transformations are classified by distinct Hermite normal forms [3].
The space of all single-mode GKP codes is the moduli space of elliptic curves, i.e., the three sphere with a trefoil knot removed [4].
Protection
Rate
Encoding
Gates
Decoding
Fault Tolerance
Notes
Parent
- Quantum lattice code — GKP codes are \(n\)-mode quantum lattice codes with \(2n\) stabilizers, i.e., constructed using a non-degenerate lattice.
Children
Cousins
- Approximate quantum error-correcting code (AQECC) — Approximate error-correction offered by GKP codes yields achievable rates that are a constant away from the capacity of Guassian loss channels [2,5–7].
- Amplitude-damping (AD) code — Transmission schemes with multimode GKP codes achieve, up to a constant-factor offset, the capacity of AD, displacement-noise, and thermal-noise Gaussian loss channels [2,5–7]. Combining AD noise with amplification yields displacement noise, the noise that GKP codes are designed to correct [7].
- Quadrature-amplitude modulation (QAM) code — Finite-energy GKP codes are quantum analogues of lattice-based QAM codes in that both use a subset of points on a lattice.
- Numerically optimized bosonic code — Numerically optimizing GKP code lattices yields codes for three, seven, and nine modes with larger distances and fidelities than known GKP codes [21]. Neural networks can be used to optimize approximate GKP states [29].
References
- [1]
- D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Physical Review A 64, (2001) arXiv:quant-ph/0008040 DOI
- [2]
- J. Harrington and J. Preskill, “Achievable rates for the Gaussian quantum channel”, Physical Review A 64, (2001) arXiv:quant-ph/0105058 DOI
- [3]
- J. Conrad, J. Eisert, and F. Arzani, “Gottesman-Kitaev-Preskill codes: A lattice perspective”, Quantum 6, 648 (2022) arXiv:2109.14645 DOI
- [4]
- J. Conrad, A. G. Burchards, and S. T. Flammia, “Lattices, Gates, and Curves: GKP codes as a Rosetta stone”, (2024) arXiv:2407.03270
- [5]
- K. Sharma, M. M. Wilde, S. Adhikari, and M. Takeoka, “Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels”, New Journal of Physics 20, 063025 (2018) arXiv:1708.07257 DOI
- [6]
- M. Rosati, A. Mari, and V. Giovannetti, “Narrow bounds for the quantum capacity of thermal attenuators”, Nature Communications 9, (2018) arXiv:1801.04731 DOI
- [7]
- K. Noh, V. V. Albert, and L. Jiang, “Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes”, IEEE Transactions on Information Theory 65, 2563 (2019) arXiv:1801.07271 DOI
- [8]
- G. Zheng, W. He, G. Lee, K. Noh, and L. Jiang, “Performance and achievable rates of the Gottesman-Kitaev-Preskill code for pure-loss and amplification channels”, (2024) arXiv:2412.06715
- [9]
- N. C. Menicucci, “Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States”, Physical Review Letters 112, (2014) arXiv:1310.7596 DOI
- [10]
- B. Royer, S. Singh, and S. M. Girvin, “Stabilization of Finite-Energy Gottesman-Kitaev-Preskill States”, Physical Review Letters 125, (2020) arXiv:2009.07941 DOI
- [11]
- B. Royer, S. Singh, and S. M. Girvin, “Encoding Qubits in Multimode Grid States”, PRX Quantum 3, (2022) arXiv:2201.12337 DOI
- [12]
- C. Calcluth, N. Reichel, A. Ferraro, and G. Ferrini, “Sufficient Condition for Universal Quantum Computation Using Bosonic Circuits”, PRX Quantum 5, (2024) arXiv:2309.07820 DOI
- [13]
- O. Hahn, A. Ferraro, L. Hultquist, G. Ferrini, and L. García-Álvarez, “Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding”, Physical Review Letters 128, (2022) arXiv:2109.13018 DOI
- [14]
- O. Hahn, G. Ferrini, and R. Takagi, “Bridging magic and non-Gaussian resources via Gottesman-Kitaev-Preskill encoding”, (2024) arXiv:2406.06418
- [15]
- B. Q. Baragiola, G. Pantaleoni, R. N. Alexander, A. Karanjai, and N. C. Menicucci, “All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code”, Physical Review Letters 123, (2019) arXiv:1903.00012 DOI
- [16]
- J. Conrad, J. Eisert, and S. T. Flammia, “Chasing shadows with Gottesman-Kitaev-Preskill codes”, (2024) arXiv:2411.00235
- [17]
- E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices”, IEEE Transactions on Information Theory 48, 2201 (2002) DOI
- [18]
- C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
- [19]
- K. Noh and C. Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code”, Physical Review A 101, (2020) arXiv:1908.03579 DOI
- [20]
- N. Raveendran, N. Rengaswamy, F. Rozpędek, A. Raina, L. Jiang, and B. Vasić, “Finite Rate QLDPC-GKP Coding Scheme that Surpasses the CSS Hamming Bound”, Quantum 6, 767 (2022) arXiv:2111.07029 DOI
- [21]
- M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
- [22]
- L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem”, Combinatorica 6, 1 (1986) DOI
- [23]
- K. Noh, C. Chamberland, and F. G. S. L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code”, PRX Quantum 3, (2022) arXiv:2103.06994 DOI
- [24]
- D. Gottesman and L. L. Zhang, “Fibre bundle framework for unitary quantum fault tolerance”, (2017) arXiv:1309.7062
- [25]
- B. M. Terhal, J. Conrad, and C. Vuillot, “Towards scalable bosonic quantum error correction”, Quantum Science and Technology 5, 043001 (2020) arXiv:2002.11008 DOI
- [26]
- A. L. Grimsmo and S. Puri, “Quantum Error Correction with the Gottesman-Kitaev-Preskill Code”, PRX Quantum 2, (2021) arXiv:2106.12989 DOI
- [27]
- A. J. Brady, A. Eickbusch, S. Singh, J. Wu, and Q. Zhuang, “Advances in bosonic quantum error correction with Gottesman–Kitaev–Preskill Codes: Theory, engineering and applications”, Progress in Quantum Electronics 93, 100496 (2024) arXiv:2308.02913 DOI
- [28]
- J. Conrad, “The fabulous world of GKP codes”, (2024) arXiv:2412.02442
- [29]
- Y. Zeng, W. Qin, Y.-H. Chen, C. Gneiting, and F. Nori, “Neural Network-Based Design of Approximate Gottesman-Kitaev-Preskill Code”, (2024) arXiv:2411.01265
Page edit log
- Jonathan Conrad (2022-07-05) — most recent
- Victor V. Albert (2022-07-05)
- Victor V. Albert (2022-03-24)
Cite as:
“Gottesman-Kitaev-Preskill (GKP) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/multimodegkp