Description
Quantum lattice code for a non-degenerate lattice, thereby admitting a finite-dimensional logical subspace. Codes on \(n\) modes can be constructed from lattices with \(2n\)-dimensional full-rank Gram matrices \(A\).
The centralizer for the stabilizer group within the displacement operators case can be identified with the symplectic dual lattice \({\mathcal{L}}^{\perp}\) (i.e. all points in \(\mathbb{R}^{2n}\) that have integer symplectic inner product with all points in \({\mathcal{L}}\) ), such that logical operations are identified with the dual quotients \({\mathcal{L}}^{\perp}/{\mathcal{L}}\). The size of this dual quotient is the determinant of the Gram matrix, yielding the logical dimension \(d=\sqrt{\| \det{A}\|}\) [1]. Stabilizer generator matrices equivalent under symplectic transformations are classified by distinct Hermite normal forms [3].
The space of all single-mode GKP codes is the moduli space of elliptic curves, i.e., the three sphere with a trefoil knot removed [4].
Protection
The level of protection against displacement errors is quantified by the Euclidean code distance \(\Delta=\min_{x\in {\mathcal{L}}^{\perp}\setminus {\mathcal{L}}} \|x\|_2\) [3]. There are upper bounds on this distance [3,5].Rate
Transmission schemes with multimode GKP codes achieve a lower bound on displacement noise and a lower bound on the thermal-noise Gaussian channel capacities [2,6–8]. Particular random lattice families of multimode GKP codes achieve the hashing bound of the displacement noise channel [2]. Particular families of GKP codes achieve the capacity of AD and amplification channels [9].Encoding
GKP codes with fixed \(n\) and prime-dimensional logical Hilbert space are symplectically related to a disjoint product of single-mode GKP codes on \(n\) modes, such that encoding via Gaussian unitaries is possible.Dissipative stabilization of finite-energy GKP states using stabilizers conjugated by cooling ([10], Appx. B) or damping operator, i.e., a damped exponential of the total occupation number [11,12].Gates
Gaussian operations and homodyne measurements on GKP states are classically simulable, and there is a sufficient condition for an additional element to achieve universal quantum computation [13]. There is an algorithm for GKP circuit simulation whose runtime scales with the amount of negativity of the Zak-Gross Wigner function [14].There is a relation between magic (i.e., how far away a state is from being a stabilizer state) and non-Gaussianity for GKP codewords [15,16]. In particular, implementing a non-Clifford logical gate requires a higher degree of non-Gaussianity than that expressed by ideal non-normalizable GKP states [16].By applying GKP error correction to Gaussian input states, computational universality can be achieved without additional non-Gaussian elements [17]. This procedure can be alternatively desscribed as performing heterodyne detection on one half of a GKP encoded Bell pair.Logical shadow tomography protocol [18].Decoding
The MLD decoder for Gaussian displacement errors is realized by evaluating a lattice theta function, and in general the decision can be approximated by either solving (approximating) the closest vector problem (CVP) [19] (a.k.a. closest lattice point problem) or by using other effective iterative schemes when, e.g., the lattice represents a concatenated GKP code [3,20–22]. While the decoder time scales exponentially with number of modes \(n\) generically, the time can be polynomial in \(n\) for certain codes [23].Babai's nearest plane algorithm [24] can be used for bounded-distance decoding [23].Combining AD noise with amplification yields displacement noise, the noise that GKP codes are designed to correct [8].ML decoder for correcting shift errors in GKP two-qubit gates [25].Fault Tolerance
Logical Clifford operations are given by Gaussian unitaries, which map bounded-size errors to bounded-size errors [1]. For single-mode GKP codes, these operations correspond to non-trivial loops in the space of all single-mode GKP codes (the moduli space of elliptic curves, i.e., the three sphere with a trefoil knot removed) [4]. Such gates provide another example of monodromy under the particular notion of parallel transport introduced in Ref. [26].Cousins
- Amplitude-damping (AD) code— Particular families of GKP codes achieve the capacity of AD and amplification channels [9].
- \(t\)-design— GKP states on \(n\) modes and their displaced versions for all possible lattices form a rigged 2-design for all \(n\) [31].
- Holographic code— GKP codespaces exist in the CFT dual of a particular holographic framework [32,33].
- Quadrature-amplitude modulation (QAM) code— Finite-energy GKP codes are quantum analogues of lattice-based QAM codes in that both use a subset of points on a lattice.
- Numerically optimized bosonic code— Numerically optimizing GKP code lattices yields codes for three, seven, and nine modes with larger distances and fidelities than known GKP codes [23]. Neural networks can be used to optimize approximate GKP states [34].
- Qutrit-Pauli group-representation code— The qutrit-Pauli group-representation code is a subcode of a two-mode GKP code [35].
Primary Hierarchy
References
- [1]
- D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Physical Review A 64, (2001) arXiv:quant-ph/0008040 DOI
- [2]
- J. Harrington and J. Preskill, “Achievable rates for the Gaussian quantum channel”, Physical Review A 64, (2001) arXiv:quant-ph/0105058 DOI
- [3]
- J. Conrad, J. Eisert, and F. Arzani, “Gottesman-Kitaev-Preskill codes: A lattice perspective”, Quantum 6, 648 (2022) arXiv:2109.14645 DOI
- [4]
- J. Conrad, A. G. Burchards, and S. T. Flammia, “Lattices, Gates, and Curves: GKP codes as a Rosetta stone”, (2024) arXiv:2407.03270
- [5]
- S. Bhatnagar and P. V. Kumar, “A Tighter Distance Upper-Bound for Gottesman-Kitaev-Preskill Codes”, 2024 IEEE Information Theory Workshop (ITW) 615 (2024) DOI
- [6]
- K. Sharma, M. M. Wilde, S. Adhikari, and M. Takeoka, “Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels”, New Journal of Physics 20, 063025 (2018) arXiv:1708.07257 DOI
- [7]
- M. Rosati, A. Mari, and V. Giovannetti, “Narrow bounds for the quantum capacity of thermal attenuators”, Nature Communications 9, (2018) arXiv:1801.04731 DOI
- [8]
- K. Noh, V. V. Albert, and L. Jiang, “Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes”, IEEE Transactions on Information Theory 65, 2563 (2019) arXiv:1801.07271 DOI
- [9]
- G. Zheng, W. He, G. Lee, K. Noh, and L. Jiang, “Performance and achievable rates of the Gottesman-Kitaev-Preskill code for pure-loss and amplification channels”, (2024) arXiv:2412.06715
- [10]
- N. C. Menicucci, “Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States”, Physical Review Letters 112, (2014) arXiv:1310.7596 DOI
- [11]
- B. Royer, S. Singh, and S. M. Girvin, “Stabilization of Finite-Energy Gottesman-Kitaev-Preskill States”, Physical Review Letters 125, (2020) arXiv:2009.07941 DOI
- [12]
- B. Royer, S. Singh, and S. M. Girvin, “Encoding Qubits in Multimode Grid States”, PRX Quantum 3, (2022) arXiv:2201.12337 DOI
- [13]
- C. Calcluth, N. Reichel, A. Ferraro, and G. Ferrini, “Sufficient Condition for Universal Quantum Computation Using Bosonic Circuits”, PRX Quantum 5, (2024) arXiv:2309.07820 DOI
- [14]
- C. Calcluth, O. Hahn, J. Bermejo-Vega, A. Ferraro, and G. Ferrini, “Classical simulation of circuits with realistic Gottesman-Kitaev-Preskill states”, (2024) arXiv:2412.13136
- [15]
- O. Hahn, A. Ferraro, L. Hultquist, G. Ferrini, and L. García-Álvarez, “Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding”, Physical Review Letters 128, (2022) arXiv:2109.13018 DOI
- [16]
- O. Hahn, G. Ferrini, and R. Takagi, “Bridging magic and non-Gaussian resources via Gottesman-Kitaev-Preskill encoding”, (2024) arXiv:2406.06418
- [17]
- B. Q. Baragiola, G. Pantaleoni, R. N. Alexander, A. Karanjai, and N. C. Menicucci, “All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code”, Physical Review Letters 123, (2019) arXiv:1903.00012 DOI
- [18]
- J. Conrad, J. Eisert, and S. T. Flammia, “Chasing shadows with Gottesman-Kitaev-Preskill codes”, (2024) arXiv:2411.00235
- [19]
- E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices”, IEEE Transactions on Information Theory 48, 2201 (2002) DOI
- [20]
- C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
- [21]
- K. Noh and C. Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code”, Physical Review A 101, (2020) arXiv:1908.03579 DOI
- [22]
- N. Raveendran, N. Rengaswamy, F. Rozpędek, A. Raina, L. Jiang, and B. Vasić, “Finite Rate QLDPC-GKP Coding Scheme that Surpasses the CSS Hamming Bound”, Quantum 6, 767 (2022) arXiv:2111.07029 DOI
- [23]
- M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
- [24]
- L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem”, Combinatorica 6, 1 (1986) DOI
- [25]
- K. Noh, C. Chamberland, and F. G. S. L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code”, PRX Quantum 3, (2022) arXiv:2103.06994 DOI
- [26]
- D. Gottesman and L. L. Zhang, “Fibre bundle framework for unitary quantum fault tolerance”, (2017) arXiv:1309.7062
- [27]
- B. M. Terhal, J. Conrad, and C. Vuillot, “Towards scalable bosonic quantum error correction”, Quantum Science and Technology 5, 043001 (2020) arXiv:2002.11008 DOI
- [28]
- A. L. Grimsmo and S. Puri, “Quantum Error Correction with the Gottesman-Kitaev-Preskill Code”, PRX Quantum 2, (2021) arXiv:2106.12989 DOI
- [29]
- A. J. Brady, A. Eickbusch, S. Singh, J. Wu, and Q. Zhuang, “Advances in bosonic quantum error correction with Gottesman–Kitaev–Preskill Codes: Theory, engineering and applications”, Progress in Quantum Electronics 93, 100496 (2024) arXiv:2308.02913 DOI
- [30]
- J. Conrad, The Fabulous World of GKP Codes, Freie Universität Berlin, 2024 arXiv:2412.02442 DOI
- [31]
- J. Conrad, J. T. Iosue, A. G. Burchards, and V. V. Albert, “Continuous-variable designs and design-based shadow tomography from random lattices”, (2024) arXiv:2412.17909
- [32]
- A. Guevara and Y. Hu, “Celestial Quantum Error Correction I: Qubits from Noncommutative Klein Space”, (2023) arXiv:2312.16298
- [33]
- A. Guevara and Y. Hu, “Celestial Quantum Error Correction II: From Qudits to Celestial CFT”, (2024) arXiv:2412.19653
- [34]
- Y. Zeng, W. Qin, Y.-H. Chen, C. Gneiting, and F. Nori, “Neural Network-Based Design of Approximate Gottesman-Kitaev-Preskill Code”, (2024) arXiv:2411.01265
- [35]
- Y. Wang, Y. Xu, and Z.-W. Liu, “Encoded quantum gates by geometric rotation on tessellations”, (2024) arXiv:2410.18713
Page edit log
- Jonathan Conrad (2022-07-05) — most recent
- Victor V. Albert (2022-07-05)
- Victor V. Albert (2022-03-24)
Cite as:
“Gottesman-Kitaev-Preskill (GKP) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/multimodegkp