[Jump to code hierarchy]

Holographic code[1]

Description

Block quantum code whose features serve to model aspects of the AdS/CFT holographic duality and, more generally, quantum gravity.

Notes

Reviews of holographic codes [2,3].

Cousins

Primary Hierarchy

Parents
Holographic code
Children
Matrix-model codes are motivated by the Ads/CFT correspondence because it is manifest in continuous non-Abelian gauge theories with large gauge groups [12].
The RG cat code encoder has coarse-graining features reminiscent of holography [7].
Holographic codes whose encoders are holographic tensor networks are holographic tensor-network codes.
CFT codewords lie in the low-energy subspace of a conformal field theory (CFT), e.g., the quantum Ising model at its critical point.
The robustness of KPT codes does not rely on arguments from holographic duality, but such codes do aim to describe interiors of black holes.
In a holographic model [13], the large distance of these codes can be interpreted as being due to the emergence of a wormhole.

References

[1]
F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence”, Journal of High Energy Physics 2015, (2015) arXiv:1503.06237 DOI
[2]
A. Jahn and J. Eisert, “Holographic tensor network models and quantum error correction: a topical review”, Quantum Science and Technology 6, 033002 (2021) arXiv:2102.02619 DOI
[3]
T. Kibe, P. Mandayam, and A. Mukhopadhyay, “Holographic spacetime, black holes and quantum error correcting codes: a review”, The European Physical Journal C 82, (2022) arXiv:2110.14669 DOI
[4]
P. Hayden and G. Penington, “Learning the Alpha-bits of black holes”, Journal of High Energy Physics 2019, (2019) arXiv:1807.06041 DOI
[5]
A. Almheiri, X. Dong, and D. Harlow, “Bulk locality and quantum error correction in AdS/CFT”, Journal of High Energy Physics 2015, (2015) arXiv:1411.7041 DOI
[6]
F. Pastawski and J. Preskill, “Code Properties from Holographic Geometries”, Physical Review X 7, (2017) arXiv:1612.00017 DOI
[7]
K. Furuya, N. Lashkari, and S. Ouseph, “Real-space RG, error correction and Petz map”, Journal of High Energy Physics 2022, (2022) arXiv:2012.14001 DOI
[8]
N. Bao and J. Naskar, “Code properties of the holographic Sierpinski triangle”, Physical Review D 106, (2022) arXiv:2203.01379 DOI
[9]
A. Guevara and Y. Hu, “Celestial Quantum Error Correction I: Qubits from Noncommutative Klein Space”, (2023) arXiv:2312.16298
[10]
A. Guevara and Y. Hu, “Celestial Quantum Error Correction II: From Qudits to Celestial CFT”, (2024) arXiv:2412.19653
[11]
T. Schuster, N. Tantivasadakarn, A. Vishwanath, and N. Y. Yao, “A holographic view of topological stabilizer codes”, (2023) arXiv:2312.04617
[12]
C. Cao, G. Cheng, and B. Swingle, “Large \(N\) Matrix Quantum Mechanics as a Quantum Memory”, (2022) arXiv:2211.08448
[13]
G. Bentsen, P. Nguyen, and B. Swingle, “Approximate Quantum Codes From Long Wormholes”, Quantum 8, 1439 (2024) arXiv:2310.07770 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: holographic

Cite as:
“Holographic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/holographic
BibTeX:
@incollection{eczoo_holographic, title={Holographic code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/holographic} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/holographic

Cite as:

“Holographic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/holographic

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/block/holographic.yml.