Holographic code[1] 

Description

Block quantum code whose features serve to model aspects of the AdS/CFT holographic duality and, more generally, quantum gravity.

Notes

Reviews of holographic codes [2,3].

Parent

Children

  • Matrix-model code — Matrix-model codes are motivated by the Ads/CFT correspondence because it is manifest in continuous non-Abelian gauge theories with large gauge groups [4].
  • Renormalization group (RG) cat code — The RG cat code encoder has coarse-graining features reminiscent of holography [5].
  • Holographic tensor-network code — Holographic codes whose encoders are holographic tensor networks are holographic tensor-network codes.
  • Conformal-field theory (CFT) code — CFT codewords lie in the low-energy subspace of a conformal field theory (CFT), e.g., the quantum Ising model at its critical point.
  • Kim-Preskill-Tang (KPT) code — The robustness of KPT codes does not rely on arguments from holographic duality, but such codes do aim to describe interiors of black holes.
  • SYK code — In a holographic model [6], the large distance of these codes can be interpreted as being due to the emergence of a wormhole.

Cousins

References

[1]
F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence”, Journal of High Energy Physics 2015, (2015) arXiv:1503.06237 DOI
[2]
A. Jahn and J. Eisert, “Holographic tensor network models and quantum error correction: a topical review”, Quantum Science and Technology 6, 033002 (2021) arXiv:2102.02619 DOI
[3]
T. Kibe, P. Mandayam, and A. Mukhopadhyay, “Holographic spacetime, black holes and quantum error correcting codes: a review”, The European Physical Journal C 82, (2022) arXiv:2110.14669 DOI
[4]
C. Cao, G. Cheng, and B. Swingle, “Large \(N\) Matrix Quantum Mechanics as a Quantum Memory”, (2022) arXiv:2211.08448
[5]
K. Furuya, N. Lashkari, and S. Ouseph, “Real-space RG, error correction and Petz map”, Journal of High Energy Physics 2022, (2022) arXiv:2012.14001 DOI
[6]
G. Bentsen, P. Nguyen, and B. Swingle, “Approximate Quantum Codes From Long Wormholes”, Quantum 8, 1439 (2024) arXiv:2310.07770 DOI
[7]
P. Hayden and G. Penington, “Learning the Alpha-bits of black holes”, Journal of High Energy Physics 2019, (2019) arXiv:1807.06041 DOI
[8]
A. Almheiri, X. Dong, and D. Harlow, “Bulk locality and quantum error correction in AdS/CFT”, Journal of High Energy Physics 2015, (2015) arXiv:1411.7041 DOI
[9]
F. Pastawski and J. Preskill, “Code Properties from Holographic Geometries”, Physical Review X 7, (2017) arXiv:1612.00017 DOI
[10]
N. Bao and J. Naskar, “Code properties of the holographic Sierpinski triangle”, Physical Review D 106, (2022) arXiv:2203.01379 DOI
[11]
T. Schuster, N. Tantivasadakarn, A. Vishwanath, and N. Y. Yao, “A holographic view of topological stabilizer codes”, (2023) arXiv:2312.04617
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: holographic

Cite as:
“Holographic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/holographic
BibTeX:
@incollection{eczoo_holographic, title={Holographic code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/holographic} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/holographic

Cite as:

“Holographic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/holographic

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/block/holographic.yml.