Approximate operator-algebra error-correcting code[1,2] 

Description

Code encoding quantum and/or classical information that approximately corrects against noise affecting operators forming an algebra.

Protection

Given some algebra \(\mathcal{A}\), \(\mathcal{A}\) is \(\epsilon\)-correctable under noise channel \(\mathcal{N}\) if there exists some quantum channel \(\mathcal{R}\) such that \begin{align} ||(\mathcal{R}\circ\mathcal{N})-P_{\mathcal{A}}||_{\diamond}\leq\epsilon~, \tag*{(1)}\end{align} where \(P_{\mathcal{A}}\) is the projector onto algebra \(A\) and we use the diamond norm \(\diamond\) [3].

Let the minimal error for some algebra \(\mathcal{A}\) under noise channel \(\mathcal{N}\) be \begin{align} \epsilon_{\mathcal{A}}=\min_{\mathcal{R}} ||\mathcal{R}\circ\mathcal{N}-P_{\mathcal{A}}||_{\diamond}~. \tag*{(2)}\end{align} Let \(\delta_{\mathcal{A}}=||\mathcal{N}^C-\mathcal{N}^C\circ P_{\mathcal{A}'}||_{\diamond}\) for commutant \(\mathcal{A}'\) of algebra \(\mathcal{A}\) and complementary channel \(\mathcal{N}^C\) of noise channel \(\mathcal{N}\). Then [1], \begin{align} \delta_{\mathcal{A}}^2/4\leq \epsilon_{\mathcal{A}}\leq 2\delta_{\mathcal{A}}^{1/2}~. \tag*{(3)}\end{align}

Parent

Child

Cousin

  • Holographic code — Properties of holographic codes are often quantified in the Heisenberg picture, i.e., in terms of operator algebras [4,5].

References

[1]
C. Bény, “Conditions for the approximate correction of algebras”, (2009) arXiv:0907.4207
[2]
C. Bény and O. Oreshkov, “General Conditions for Approximate Quantum Error Correction and Near-Optimal Recovery Channels”, Physical Review Letters 104, (2010) arXiv:0907.5391 DOI
[3]
D. Aharonov, A. Kitaev, and N. Nisan, “Quantum Circuits with Mixed States”, (1998) arXiv:quant-ph/9806029
[4]
A. Almheiri, X. Dong, and D. Harlow, “Bulk locality and quantum error correction in AdS/CFT”, Journal of High Energy Physics 2015, (2015) arXiv:1411.7041 DOI
[5]
F. Pastawski and J. Preskill, “Code Properties from Holographic Geometries”, Physical Review X 7, (2017) arXiv:1612.00017 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: approximate_oaecc

Cite as:
“Approximate operator-algebra error-correcting code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/approximate_oaecc
BibTeX:
@incollection{eczoo_approximate_oaecc,
  title={Approximate operator-algebra error-correcting code},
  booktitle={The Error Correction Zoo},
  year={2023},
  editor={Albert, Victor V. and Faist, Philippe},
  url={https://errorcorrectionzoo.org/c/approximate_oaecc}
}
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/approximate_oaecc

Cite as:

“Approximate operator-algebra error-correcting code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/approximate_oaecc

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/approximate_oaecc.yml.