Checkerboard model code[1]
Description
A foliated type-I fracton code defined on a cubic lattice that admits weight-eight \(X\)- and \(Z\)-type stabilizer generators on the eight vertices of each cube in the lattice. A tetrahedral Ising model can be used to obtain the checkerboard model by gauging [2–11] its subsystem symmetry [4].
Variants include the twisted checkerboard model [12].
Decoding
Parallelized matching decoder [13].Code Capacity Threshold
Independent \(X,Z\) noise: \(\approx 7.5\%\), higher than 3D surface code and color code [14].Cousins
- X-cube model code— The checkerboard model is equivalent to two copies of the X-cube model via a local constant-depth unitary [15].
- Fracton Floquet code— The ISG of the X-cube Floquet code can be that of the X-cube model code or the checkerboard model code.
Primary Hierarchy
Parents
The checkerboard model is equivalent to two copies of the X-cube model via a local constant-depth unitary [15]. Hence, it is a foliated type-I fracton code.
Lifted-product (LP) codeGeneralized homological-product QLDPC CSS Stabilizer Hamiltonian-based QECC Quantum
The checkerboard model code can be formulated directly as an LP code [16].
Checkerboard model code
References
- [1]
- S. Vijay, J. Haah, and L. Fu, “A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations”, Physical Review B 92, (2015) arXiv:1505.02576 DOI
- [2]
- M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases”, Physical Review B 86, (2012) arXiv:1202.3120 DOI
- [3]
- J. Haegeman, K. Van Acoleyen, N. Schuch, J. I. Cirac, and F. Verstraete, “Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems”, Physical Review X 5, (2015) arXiv:1407.1025 DOI
- [4]
- S. Vijay, J. Haah, and L. Fu, “Fracton topological order, generalized lattice gauge theory, and duality”, Physical Review B 94, (2016) arXiv:1603.04442 DOI
- [5]
- D. J. Williamson, “Fractal symmetries: Ungauging the cubic code”, Physical Review B 94, (2016) arXiv:1603.05182 DOI
- [6]
- L. Bhardwaj, D. Gaiotto, and A. Kapustin, “State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter”, Journal of High Energy Physics 2017, (2017) arXiv:1605.01640 DOI
- [7]
- A. Kubica and B. Yoshida, “Ungauging quantum error-correcting codes”, (2018) arXiv:1805.01836
- [8]
- W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging subsystem symmetries”, SciPost Physics 6, (2019) arXiv:1806.08679 DOI
- [9]
- K. Dolev, V. Calvera, S. S. Cree, and D. J. Williamson, “Gauging the bulk: generalized gauging maps and holographic codes”, Journal of High Energy Physics 2022, (2022) arXiv:2108.11402 DOI
- [10]
- T. Rakovszky and V. Khemani, “The Physics of (good) LDPC Codes I. Gauging and dualities”, (2023) arXiv:2310.16032
- [11]
- D. J. Williamson and T. J. Yoder, “Low-overhead fault-tolerant quantum computation by gauging logical operators”, (2024) arXiv:2410.02213
- [12]
- H. Song, A. Prem, S.-J. Huang, and M. A. Martin-Delgado, “Twisted fracton models in three dimensions”, Physical Review B 99, (2019) arXiv:1805.06899 DOI
- [13]
- B. J. Brown and D. J. Williamson, “Parallelized quantum error correction with fracton topological codes”, Physical Review Research 2, (2020) arXiv:1901.08061 DOI
- [14]
- H. Song, J. Schönmeier-Kromer, K. Liu, O. Viyuela, L. Pollet, and M. A. Martin-Delgado, “Optimal Thresholds for Fracton Codes and Random Spin Models with Subsystem Symmetry”, Physical Review Letters 129, (2022) arXiv:2112.05122 DOI
- [15]
- W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order in the checkerboard model”, Physical Review B 99, (2019) arXiv:1806.08633 DOI
- [16]
- Y. Tan, B. Roberts, N. Tantivasadakarn, B. Yoshida, and N. Y. Yao, “Fracton models from product codes”, (2024) arXiv:2312.08462
Page edit log
- Victor V. Albert (2024-01-30) — most recent
Cite as:
“Checkerboard model code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/checkerboard