Lifted-product (LP) code[1,2] 

Also known as Panteleev-Kalachev (PK) code.

Description

Galois-qudit code that utilizes the notion of a lifted product in its construction. Lifted products of certain classical Tanner codes are the first (asymptotically) good QLDPC codes.

A code can be defined by \(LP(A,B)\), where \(A\) and \(B\) are a pair of matrices with elements from a group algebra. Heuristically, the code is constructed as a hypergraph product code over the group algebra, with each entry subsequently extended into a matrix.

More technically, a lifted product over a ring \(R\) is a product of two chain complexes whose chains are free modules over \(R\). An interesting case is when \(R=\mathbb{F}_q [G]\), the group-\(G\) algebra over the finite field \({\mathbb{F}}_q = GF(q)\); in this case, the product can be called a \(G\)-lifted product. Just like its further generalization the balanced product, a lifted product code generalizes a hypergraph product code in that a reduction of symmetry is exploited to decrease the number of physical qubits required.

The key operation behind the \(G\)-lifted product is the \(G\)-lift, a group-algebraic version of the lifting procedure of protograph LDPC codes. A combination of the lift and the usual hypergraph product yields lifted-product codes. The two operations commute: one can first take the usual hypergraph product of two chain complexes, and then lift the resulting product complex; equivalently, one can take the hypergraph product of the two lifted complexes.

Protection

Code performance strongly depends on the group \(G\) used in the product [3].

Rate

There is no known simple way to compute the logical dimension \(k\) in the general case [3].

Notes

Formerly known as generalized hypergraph product codes [1], and later renamed to lifted-product codes [3,4].

Parent

  • Balanced product (BP) code — Coarsely speaking, a lifted product is a balanced product where the group \(G\) acts freely. However, in principle, a lifted product can be defined for rings that are more general than group algebras \( \mathbb{F}_q G \).

Children

Cousins

  • Fiber-bundle code — Lifted products of a length-one with a length-\(m\) chain complex can be thought of as fiber-bundle codes.
  • Haah cubic code (CC) — A lifted-product code constructed with coefficients in the ring \(R=\mathbb{F}_2[x,y,z]/(x^L-1,y^L-1,z^L-1)\) is a cubic code [2; Appx. B].
  • Fiber-bundle code — The specific fiber-bundle QLDPC code achieving a distance scaling better than \(\sqrt{n}~\text{polylog}(n)\) can also be formulated as an LP code (see published version [6]).
  • Subsystem lifted-product (SLP) code — SLP codes reduce to (subspace) LP codes when there is no gauge subsystem.
  • Two-block CSS code — LP codes can be constructed using non-square matrices and taking a hypergraph product over a group algebra, while two-block CSS codes are constructed directly using square matrices.

References

[1]
P. Panteleev and G. Kalachev, “Degenerate Quantum LDPC Codes With Good Finite Length Performance”, Quantum 5, 585 (2021) arXiv:1904.02703 DOI
[2]
P. Panteleev and G. Kalachev, “Asymptotically Good Quantum and Locally Testable Classical LDPC Codes”, (2022) arXiv:2111.03654
[3]
P. Panteleev and G. Kalachev, “Quantum LDPC Codes With Almost Linear Minimum Distance”, IEEE Transactions on Information Theory 68, 213 (2022) arXiv:2012.04068 DOI
[4]
N. P. Breuckmann and J. N. Eberhardt, “Quantum Low-Density Parity-Check Codes”, PRX Quantum 2, (2021) DOI
[5]
P. Panteleev and G. Kalachev, “Maximally Extendable Sheaf Codes”, (2024) arXiv:2403.03651
[6]
M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes: breaking the n \({}^{\text{1/2}}\) polylog( n ) barrier for Quantum LDPC codes”, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing 17, 1276 (2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: lifted_product

Cite as:
“Lifted-product (LP) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/lifted_product
BibTeX:
@incollection{eczoo_lifted_product, title={Lifted-product (LP) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/lifted_product} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/lifted_product

Cite as:

“Lifted-product (LP) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/lifted_product

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/qldpc/balanced_product/lp/lifted_product.yml.