Description
\(q\)-ary LDPC code whose parity-check matrix is constructed using the lifting procedure as well as using edge scaling, i.e., the ability to assign non-binary edge weights.
Protection
Minimum distance bounds [5].
Parent
Child
References
- [1]
- A. Marinoni, P. Savazzi, and R. D. Wesel, “Protograph-based q-ary LDPC codes for higher-order modulation”, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing (2010) DOI
- [2]
- D. Divsalar and L. Dolecek, “Enumerators for protograph-based ensembles of nonbinary LDPC codes”, 2011 IEEE International Symposium on Information Theory Proceedings (2011) DOI
- [3]
- K. Huang et al., “Performance comparison of non-binary LDPC block and spatially coupled codes”, 2014 IEEE International Symposium on Information Theory (2014) DOI
- [4]
- L. Dolecek et al., “Non-Binary Protograph-Based LDPC Codes: Enumerators, Analysis, and Designs”, IEEE Transactions on Information Theory 60, 3913 (2014) DOI
- [5]
- D. Divsalar and L. Dolecek, “On the typical minimum distance of protograph-based non-binary LDPC codes”, 2012 Information Theory and Applications Workshop (2012) DOI
Page edit log
- Victor V. Albert (2023-05-04) — most recent
Cite as:
“\(q\)-ary protograph LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/q-ary_protograph_ldpc