Description
Subsystem CSS code defined on an \(m_1 \times m_2\) lattice of qubits that generalizes the \([[9,1,3]]\) (subspace) Shor code. It is said to be symmetric when \(m_1=m_2\), and asymmetric otherwise.
The \(X\)-type and \(Z\)-type stabilizers defined as \(X\) and \(Z\) operators acting on all qubits on adjacent columns and rows, respectively. Let \(O_{i,j}\) denote an operator acting on the qubit at a position \((i,j)\) on the lattice, with \(i\in\{0,1,\ldots ,m_1-1\}\) and \(j\in\{0,1,\ldots,m_2-1\}\). The code's stabilizer group is \begin{align} \mathsf{S}=\langle X_{i,*}X_{i+1,*},Z_{*,j}Z_{*,j+1}\rangle~, \tag*{(1)}\end{align} with generators expressed as products of nearest-neightbour 2-qubit gauge operators, \begin{align} \begin{split} X_{i,*}X_{i+1,*}= \bigotimes_{k=0}^{m_2-1} X_{i,k}X_{i+1,k} \\ Z_{*,j}Z_{*,j+1}=\bigotimes_{k=0}^{m_1-1} Z_{k,j}Z_{k,j+1}~. \end{split} \tag*{(2)}\end{align} Syndrome extraction can be done by measuring these gauge operators, which are on fewer qubits and local.
Protection
Rate
Transversal Gates
Gates
Decoding
Fault Tolerance
Code Capacity Threshold
Threshold
Notes
Parents
- Bravyi-Bacon-Shor (BBS) code
- Subsystem hypergraph product (SHP) code
- Compass code — A compass code on a fully non-colored lattice reduces to the Bacon-Shor code.
Children
- \([[4,1,1,2]]\) Four-qubit subsystem code — The four-qubit subsystem code is the shortest error-detecting Bacon-Shor code.
- \([[9,1,3,3]]\) Nine-qubit Bacon-Shor code — The nine-qubit Bacon-Shor code is the shortest error-correcting Bacon-Shor code.
Cousins
- Hamiltonian-based code — The 2D Bacon-Shor gauge-group Hamiltonian is the compass model [23–25].
- Hastings-Haah Floquet code — The Bacon-Shor code admits a Floquet version with a particular stabilizer measurement schedule [26].
- Hybrid stabilizer code — There are several ways to convert Bacon-Shor codes to hybrid qubit stabilizer codes [27,28]
- Asymmetric quantum code — Bacon-Shor code parameters against bit- and phase-noise can be optimized by changing the block geometry, yielding good performance against biased noise [3]. A fault-tolerant teleportation-based computation scheme for asymmetric Bacon-Shor codes is effective against highly biased noise [17].
- Self-correcting quantum code — 3D Bacon-Shor codes were conjectured to be self-correcting [2], but there remain issues to be resolved in order to validate this conjecture (see [29; Sec. IX.B]).
- Majorana subsystem stabilizer code — Bacon-Shor codes can be fermionized into fermionic subsystem codes with two-body terms [30].
- GNU PI code — GNU codes of length \((2t+1)^2\) result from projecting Bacon-Shor codes into the PI qubit subspace [31].
- Quantum parity code (QPC) — Bacon-Shor codes reduce to QPCs when all \(X\)-type gauge generators are fixed [32; pg. 6].
- Heavy-hexagon code — Bacon-Shor stabilizers are used to measure the X-type stabilizers of the code.
References
- [1]
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Physical Review A 52, R2493 (1995) DOI
- [2]
- D. Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum memories”, Physical Review A 73, (2006) arXiv:quant-ph/0506023 DOI
- [3]
- J. Napp and J. Preskill, “Optimal Bacon-Shor codes”, (2012) arXiv:1209.0794
- [4]
- P. Aliferis and A. W. Cross, “Subsystem Fault Tolerance with the Bacon-Shor Code”, Physical Review Letters 98, (2007) arXiv:quant-ph/0610063 DOI
- [5]
- X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum logic gate construction”, Physical Review A 62, (2000) arXiv:quant-ph/0002039 DOI
- [6]
- T. J. Yoder, “Universal fault-tolerant quantum computation with Bacon-Shor codes”, (2017) arXiv:1705.01686
- [7]
- Yoder, Theodore., DSpace@MIT Practical Fault-Tolerant Quantum Computation (2018)
- [8]
- H. Poulsen Nautrup, N. Friis, and H. J. Briegel, “Fault-tolerant interface between quantum memories and quantum processors”, Nature Communications 8, (2017) arXiv:1609.08062 DOI
- [9]
- S. Veroni, A. Paler, and G. Giudice, “Universal quantum computation via scalable measurement-free error correction”, (2024) arXiv:2412.15187
- [10]
- G. Escobar-Arrieta and M. Gutiérrez, “Improved performance of the Bacon-Shor code with Steane’s syndrome extraction method”, (2024) arXiv:2403.01659
- [11]
- E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory”, Journal of Mathematical Physics 43, 4452 (2002) arXiv:quant-ph/0110143 DOI
- [12]
- A. T. Schmitz, “Thermal Stability of Dynamical Phase Transitions in Higher Dimensional Stabilizer Codes”, (2020) arXiv:2002.11733
- [13]
- H. Bombin, “Topological subsystem codes”, Physical Review A 81, (2010) arXiv:0908.4246 DOI
- [14]
- M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes: breaking the n \({}^{\text{1/2}}\) polylog( n ) barrier for Quantum LDPC codes”, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing 1276 (2021) arXiv:2009.03921 DOI
- [15]
- M. B. Hastings and J. Haah, “Dynamically Generated Logical Qubits”, Quantum 5, 564 (2021) arXiv:2107.02194 DOI
- [16]
- G. Sarma and H. Mabuchi, “Gauge subsystems, separability and robustness in autonomous quantum memories”, New Journal of Physics 15, 035014 (2013) arXiv:1212.3564 DOI
- [17]
- P. Brooks and J. Preskill, “Fault-tolerant quantum computation with asymmetric Bacon-Shor codes”, Physical Review A 87, (2013) arXiv:1211.1400 DOI
- [18]
- N. C. Brown, M. Newman, and K. R. Brown, “Handling leakage with subsystem codes”, New Journal of Physics 21, 073055 (2019) arXiv:1903.03937 DOI
- [19]
- C. Gidney and D. Bacon, “Less Bacon More Threshold”, (2023) arXiv:2305.12046
- [20]
- A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, “A comparative code study for quantum fault-tolerance”, (2009) arXiv:0711.1556
- [21]
- D. Lee and B. Yoshida, “Randomly Monitored Quantum Codes”, (2024) arXiv:2402.00145
- [22]
- B. M. Terhal, “Quantum error correction for quantum memories”, Reviews of Modern Physics 87, 307 (2015) arXiv:1302.3428 DOI
- [23]
- K. I. Kugel’ and D. I. Khomskiĭ, “The Jahn-Teller effect and magnetism: transition metal compounds”, Soviet Physics Uspekhi 25, 231 (1982) DOI
- [24]
- J. Dorier, F. Becca, and F. Mila, “Quantum compass model on the square lattice”, Physical Review B 72, (2005) arXiv:cond-mat/0501708 DOI
- [25]
- Z. Nussinov and J. van den Brink, “Compass and Kitaev models -- Theory and Physical Motivations”, (2013) arXiv:1303.5922
- [26]
- M. S. Alam and E. Rieffel, “Dynamical Logical Qubits in the Bacon-Shor Code”, (2024) arXiv:2403.03291
- [27]
- A. Nemec and A. Klappenecker, “Encoding classical information in gauge subsystems of quantum codes”, International Journal of Quantum Information 20, (2022) arXiv:2012.05896 DOI
- [28]
- G. Dauphinais, D. W. Kribs, and M. Vasmer, “Stabilizer Formalism for Operator Algebra Quantum Error Correction”, Quantum 8, 1261 (2024) arXiv:2304.11442 DOI
- [29]
- B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton, “Quantum memories at finite temperature”, Reviews of Modern Physics 88, (2016) arXiv:1411.6643 DOI
- [30]
- A. Chapman, S. T. Flammia, and A. J. Kollár, “Free-Fermion Subsystem Codes”, (2022) arXiv:2201.07254
- [31]
- Y. Ouyang, “Permutation-invariant quantum codes”, Physical Review A 90, (2014) arXiv:1302.3247 DOI
- [32]
- M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, “2D Compass Codes”, Physical Review X 9, (2019) arXiv:1809.01193 DOI
Page edit log
- Victor V. Albert (2022-07-31) — most recent
- Mazin Karjikar (2022-06-28)
- Victor V. Albert (2022-03-15)
- Srilekha Gandhari (2022-01-20)
- Victor V. Albert (2021-12-03)
Cite as:
“Bacon-Shor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bacon_shor