## Description

CSS subsystem stabilizer code defined on an \(m_1 \times m_2\) lattice of qubits. It is said to be symmetric when \(m_1=m_2\). The \(X\)-type and \(Z\)-type stabilizers defined as \(X\) and \(Z\) operators acting on all qubits on adjacent columns and rows, respectively. Let \(O_{i,j}\) denote an operator acting on the qubit at a position \((i,j)\) on the lattice, with \(i\in\{0,1,\ldots ,m_1-1\}\) and \(j\in\{0,1,\ldots,m_2-1\}\). The code's stabilizer group is \begin{align} \mathsf{S}=\langle X_{i,*}X_{i+1,*},Z_{*,j}Z_{*,j+1}\rangle~, \tag*{(1)}\end{align} with generators expressed as products of nearest-neightbour 2-qubit gauge operators, \begin{align} \begin{split} X_{i,*}X_{i+1,*}= \bigotimes_{k=0}^{m_2-1} X_{i,k}X_{i+1,k} \\ Z_{*,j}Z_{*,j+1}=\bigotimes_{k=0}^{m_1-1} Z_{k,j}Z_{k,j+1}~. \end{split} \tag*{(2)}\end{align} Syndrome extraction can be done by measuring these gauge operators, which are on fewer qubits and local.

The error-detecting \([[4,1,2]]\) Bacon-Shor code, which reduces to a subcode of the \([[4,2,2]]\) code for a particular gauge configuration, has gauge operators \(\{XIXI,IIXX,ZIZI,IZIZ\}\). The shortest error-correcting Bacon-Shor code is \([[9,1,3]]\) with four stabilizer generators \begin{align} \begin{array}{ccccccccc} X & X & X & X & X & X & I & I & I\\ I & I & I & X & X & X & X & X & X\\ Z & Z & I & Z & Z & I & Z & Z & I\\ I & Z & Z & I & Z & Z & I & Z & Z \end{array} \tag*{(3)}\end{align} and eight gauge generators \begin{align} \begin{array}{ccccccccc} X & I & I & X & I & I & I & I & I\\ I & X & I & I & X & I & I & I & I\\ I & I & I & X & I & I & X & I & I\\ I & I & I & I & X & I & I & X & I\\ Z & Z & I & I & I & I & I & I & I\\ I & I & I & Z & Z & I & I & I & I\\ I & Z & Z & I & I & I & I & I & I\\ I & I & I & I & Z & Z & I & I & I \end{array}~. \tag*{(4)}\end{align} If the physical qubits are arranged in a three-by-three square, the \(Z\)-type (\(X\)-type) gauge operators are supported on qubits in the same row (column). The code reduces to the Shor code for a particular gauge configuration.

## Protection

## Rate

## Transversal Gates

## Gates

## Decoding

## Fault Tolerance

## Threshold

## Realizations

## Notes

## Parents

## Cousins

- Hamiltonian-based code — The 2D Bacon-Shor code Hamiltonian is the compass model [13][14].
- Self-correcting quantum code — 3D Bacon-Shor codes were conjectured to be self-correcting [2], but there remain issues to be resolved in order to validate this conjecture (see [15; Sec. IX.B]).
- Quantum parity code (QPC) — Bacon-Shor codes reduce to QPCs for a particular gauge configuration.
- Heavy-hexagon code — Bacon-Shor stabilizers are used to measure the X-type stabilizers of the code.
- GNU permutation-invariant code — Symmetrized versions of the Bacon-Shor codes are GNU codes

## References

- [1]
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Physical Review A 52, R2493 (1995) DOI
- [2]
- D. Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum memories”, Physical Review A 73, (2006) arXiv:quant-ph/0506023 DOI
- [3]
- P. Aliferis and A. W. Cross, “Subsystem Fault Tolerance with the Bacon-Shor Code”, Physical Review Letters 98, (2007) arXiv:quant-ph/0610063 DOI
- [4]
- X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum logic gate construction”, Physical Review A 62, (2000) arXiv:quant-ph/0002039 DOI
- [5]
- T. J. Yoder, “Universal fault-tolerant quantum computation with Bacon-Shor codes”, (2017) arXiv:1705.01686
- [6]
- Yoder, Theodore., DSpace@MIT Practical Fault-Tolerant Quantum Computation (2018)
- [7]
- M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber Bundle Codes: Breaking the \(N^{1/2} \operatorname{polylog}(N)\) Barrier for Quantum LDPC Codes”, (2020) arXiv:2009.03921
- [8]
- M. B. Hastings and J. Haah, “Dynamically Generated Logical Qubits”, Quantum 5, 564 (2021) arXiv:2107.02194 DOI
- [9]
- N. C. Brown, M. Newman, and K. R. Brown, “Handling leakage with subsystem codes”, New Journal of Physics 21, 073055 (2019) arXiv:1903.03937 DOI
- [10]
- D. Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum memories”, Physical Review A 73, (2006) DOI
- [11]
- L. Egan et al., “Fault-Tolerant Operation of a Quantum Error-Correction Code”, (2021) arXiv:2009.11482
- [12]
- B. M. Terhal, “Quantum error correction for quantum memories”, Reviews of Modern Physics 87, 307 (2015) arXiv:1302.3428 DOI
- [13]
- K. I. Kugel’ and D. I. Khomskiĭ, “The Jahn-Teller effect and magnetism: transition metal compounds”, Soviet Physics Uspekhi 25, 231 (1982) DOI
- [14]
- J. Dorier, F. Becca, and F. Mila, “Quantum compass model on the square lattice”, Physical Review B 72, (2005) arXiv:cond-mat/0501708 DOI
- [15]
- B. J. Brown et al., “Quantum memories at finite temperature”, Reviews of Modern Physics 88, (2016) arXiv:1411.6643 DOI

## Page edit log

- Victor V. Albert (2022-07-31) — most recent
- Mazin Karjikar (2022-06-28)
- Victor V. Albert (2022-03-15)
- Srilekha Gandhari (2022-01-20)
- Victor V. Albert (2021-12-03)

## Cite as:

“Bacon-Shor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bacon_shor