Description
Subsystem CSS code defined on an \(m_1 \times m_2\) lattice of qubits that generalizes the \([[9,1,3]]\) (subspace) Shor code. It is said to be symmetric when \(m_1=m_2\), and asymmetric otherwise.
The \(X\)-type and \(Z\)-type stabilizers defined as \(X\) and \(Z\) operators acting on all qubits on adjacent columns and rows, respectively. Let \(O_{i,j}\) denote an operator acting on the qubit at a position \((i,j)\) on the lattice, with \(i\in\{0,1,\ldots ,m_1-1\}\) and \(j\in\{0,1,\ldots,m_2-1\}\). The code's stabilizer group is \begin{align} \mathsf{S}=\langle X_{i,*}X_{i+1,*},Z_{*,j}Z_{*,j+1}\rangle~, \tag*{(1)}\end{align} with generators expressed as products of nearest-neightbour 2-qubit gauge operators, \begin{align} \begin{split} X_{i,*}X_{i+1,*}= \bigotimes_{k=0}^{m_2-1} X_{i,k}X_{i+1,k} \\ Z_{*,j}Z_{*,j+1}=\bigotimes_{k=0}^{m_1-1} Z_{k,j}Z_{k,j+1}~. \end{split} \tag*{(2)}\end{align} Syndrome extraction can be done by measuring these gauge operators, which are on fewer qubits and local.
The shortest error-correcting Bacon-Shor code is \([[9,1,3,3]]\), with four stabilizer generators \begin{align} \begin{array}{ccccccccc} X & X & X & X & X & X & I & I & I\\ I & I & I & X & X & X & X & X & X\\ Z & Z & I & Z & Z & I & Z & Z & I\\ I & Z & Z & I & Z & Z & I & Z & Z \end{array}~, \tag*{(3)}\end{align} which generate the gauge group with the help of eight additional generators \begin{align} \begin{array}{ccccccccc} X & I & I & X & I & I & I & I & I\\ I & X & I & I & X & I & I & I & I\\ I & I & I & X & I & I & X & I & I\\ I & I & I & I & X & I & I & X & I\\ Z & Z & I & I & I & I & I & I & I\\ I & I & I & Z & Z & I & I & I & I\\ I & Z & Z & I & I & I & I & I & I\\ I & I & I & I & Z & Z & I & I & I \end{array}~. \tag*{(4)}\end{align} If the physical qubits are arranged in a three-by-three square, the \(Z\)-type (\(X\)-type) gauge operators are supported on qubits in the same row (column). The code reduces to the Shor code for a particular gauge configuration.
Protection
Rate
Transversal Gates
Gates
Decoding
Fault Tolerance
Code Capacity Threshold
Threshold
Realizations
Notes
Parents
- Bravyi-Bacon-Shor (BBS) code
- Subsystem hypergraph product (SHP) code
- Compass code — A compass code on a fully non-colored lattice reduces to the Bacon-Shor code.
Child
- \([[4,1,1,2]]\) Four-qubit subsystem code — The four-qubit subsystem code is the shortest error-detecting Bacon-Shor code.
Cousins
- Hamiltonian-based code — The 2D Bacon-Shor gauge-group Hamiltonian is the compass model [25–27]. Bacon-Shor code Hamiltonians can be used to suppress errors in adiabatic quantum computation [28], while subspace-code Hamiltonians with weight-two (two-body) terms cannot [29].
- Hastings-Haah Floquet code — The Bacon-Shor code admits a Floquet version with a particular stabilizer measurement schedule [30].
- Asymmetric quantum code — Bacon-Shor code parameters against bit- and phase-noise can be optimized by changing the block geometry, yielding good performance against biased noise [3]. A fault-tolerant teleportation-based computation scheme for asymmetric Bacon-Shor codes is effective against highly biased noise [17].
- Self-correcting quantum code — 3D Bacon-Shor codes were conjectured to be self-correcting [2], but there remain issues to be resolved in order to validate this conjecture (see [31; Sec. IX.B]).
- Majorana subsystem stabilizer code — Bacon-Shor codes can be fermionized into fermionic subsystem codes with two-body terms [32].
- Operator-algebra (OA) qubit stabilizer code — The OA qubit stabilizer formalism yields hybrid Bacon-Shor codes [33].
- GNU PI code — GNU codes of length \((2t+1)^2\) result from projecting Bacon-Shor codes into the PI qubit subspace [34].
- \([[9,1,3]]\) Shor code — The \([[9,1,3,3]]\) Bacon-Shor code reduces to the Shor code for a particular gauge configuration.
- Quantum parity code (QPC) — Bacon-Shor codes reduce to QPCs when all \(X\)-type gauge generators are fixed [35; pg. 6].
- Heavy-hexagon code — Bacon-Shor stabilizers are used to measure the X-type stabilizers of the code.
References
- [1]
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Physical Review A 52, R2493 (1995) DOI
- [2]
- D. Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum memories”, Physical Review A 73, (2006) arXiv:quant-ph/0506023 DOI
- [3]
- J. Napp and J. Preskill, “Optimal Bacon-Shor codes”, (2012) arXiv:1209.0794
- [4]
- P. Aliferis and A. W. Cross, “Subsystem Fault Tolerance with the Bacon-Shor Code”, Physical Review Letters 98, (2007) arXiv:quant-ph/0610063 DOI
- [5]
- X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum logic gate construction”, Physical Review A 62, (2000) arXiv:quant-ph/0002039 DOI
- [6]
- T. J. Yoder, “Universal fault-tolerant quantum computation with Bacon-Shor codes”, (2017) arXiv:1705.01686
- [7]
- Yoder, Theodore., DSpace@MIT Practical Fault-Tolerant Quantum Computation (2018)
- [8]
- H. Poulsen Nautrup, N. Friis, and H. J. Briegel, “Fault-tolerant interface between quantum memories and quantum processors”, Nature Communications 8, (2017) arXiv:1609.08062 DOI
- [9]
- Z. W. E. Evans and A. M. Stephens, “Message passing in fault-tolerant quantum error correction”, Physical Review A 78, (2008) arXiv:0806.2188 DOI
- [10]
- G. Escobar-Arrieta and M. Gutiérrez, “Improved performance of the Bacon-Shor code with Steane’s syndrome extraction method”, (2024) arXiv:2403.01659
- [11]
- E. Dennis et al., “Topological quantum memory”, Journal of Mathematical Physics 43, 4452 (2002) arXiv:quant-ph/0110143 DOI
- [12]
- A. T. Schmitz, “Thermal Stability of Dynamical Phase Transitions in Higher Dimensional Stabilizer Codes”, (2020) arXiv:2002.11733
- [13]
- H. Bombin, “Topological subsystem codes”, Physical Review A 81, (2010) arXiv:0908.4246 DOI
- [14]
- M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes: breaking the n \({}^{\text{1/2}}\) polylog( n ) barrier for Quantum LDPC codes”, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021) arXiv:2009.03921 DOI
- [15]
- M. B. Hastings and J. Haah, “Dynamically Generated Logical Qubits”, Quantum 5, 564 (2021) arXiv:2107.02194 DOI
- [16]
- G. Sarma and H. Mabuchi, “Gauge subsystems, separability and robustness in autonomous quantum memories”, New Journal of Physics 15, 035014 (2013) arXiv:1212.3564 DOI
- [17]
- P. Brooks and J. Preskill, “Fault-tolerant quantum computation with asymmetric Bacon-Shor codes”, Physical Review A 87, (2013) arXiv:1211.1400 DOI
- [18]
- N. C. Brown, M. Newman, and K. R. Brown, “Handling leakage with subsystem codes”, New Journal of Physics 21, 073055 (2019) arXiv:1903.03937 DOI
- [19]
- C. Gidney and D. Bacon, “Less Bacon More Threshold”, (2023) arXiv:2305.12046
- [20]
- F. M. Spedalieri and V. P. Roychowdhury, “Latency in local, two-dimensional, fault-tolerant quantum computing”, (2008) arXiv:0805.4213
- [21]
- A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, “A comparative code study for quantum fault-tolerance”, (2009) arXiv:0711.1556
- [22]
- D. Lee and B. Yoshida, “Randomly Monitored Quantum Codes”, (2024) arXiv:2402.00145
- [23]
- L. Egan et al., “Fault-Tolerant Operation of a Quantum Error-Correction Code”, (2021) arXiv:2009.11482
- [24]
- B. M. Terhal, “Quantum error correction for quantum memories”, Reviews of Modern Physics 87, 307 (2015) arXiv:1302.3428 DOI
- [25]
- K. I. Kugel’ and D. I. Khomskiĭ, “The Jahn-Teller effect and magnetism: transition metal compounds”, Soviet Physics Uspekhi 25, 231 (1982) DOI
- [26]
- J. Dorier, F. Becca, and F. Mila, “Quantum compass model on the square lattice”, Physical Review B 72, (2005) arXiv:cond-mat/0501708 DOI
- [27]
- Z. Nussinov and J. van den Brink, “Compass and Kitaev models -- Theory and Physical Motivations”, (2013) arXiv:1303.5922
- [28]
- Z. Jiang and E. G. Rieffel, “Non-commuting two-local Hamiltonians for quantum error suppression”, Quantum Information Processing 16, (2017) arXiv:1511.01997 DOI
- [29]
- I. Marvian and D. A. Lidar, “Quantum Error Suppression with Commuting Hamiltonians: Two Local is Too Local”, Physical Review Letters 113, (2014) arXiv:1410.5487 DOI
- [30]
- M. S. Alam and E. Rieffel, “Dynamical Logical Qubits in the Bacon-Shor Code”, (2024) arXiv:2403.03291
- [31]
- B. J. Brown et al., “Quantum memories at finite temperature”, Reviews of Modern Physics 88, (2016) arXiv:1411.6643 DOI
- [32]
- A. Chapman, S. T. Flammia, and A. J. Kollár, “Free-Fermion Subsystem Codes”, (2022) arXiv:2201.07254
- [33]
- G. Dauphinais, D. W. Kribs, and M. Vasmer, “Stabilizer Formalism for Operator Algebra Quantum Error Correction”, Quantum 8, 1261 (2024) arXiv:2304.11442 DOI
- [34]
- Y. Ouyang, “Permutation-invariant quantum codes”, Physical Review A 90, (2014) arXiv:1302.3247 DOI
- [35]
- M. Li et al., “2D Compass Codes”, Physical Review X 9, (2019) arXiv:1809.01193 DOI
Page edit log
- Victor V. Albert (2022-07-31) — most recent
- Mazin Karjikar (2022-06-28)
- Victor V. Albert (2022-03-15)
- Srilekha Gandhari (2022-01-20)
- Victor V. Albert (2021-12-03)
Cite as:
“Bacon-Shor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bacon_shor