[Jump to code hierarchy]

GNU PI code[1,2]

Description

PI code whose codewords can be expressed as superpositions of Dicke states with coefficients are square-roots of the binomial distribution.

In terms of Dicke states, logical codewords for codes encoding a single qubit [1] are \begin{align} |\overline{\pm}\rangle = \sum_{\ell=0}^{m} \frac{(\pm 1)^\ell}{\sqrt{2^m}} \sqrt{m \choose \ell} |D^n_{g \ell}\rangle~. \tag*{(1)}\end{align} Here, \(n\) is the number of particles used for encoding \(1\) qubit, and \(g, m \leq n\) are arbitrary positive integers. Codes with higher logical dimension are developed in Ref. [2]. Each Dicke state in the code can be shifted by adding a shift \(s\) to both \(n\) and \(g\).

Protection

Depends on the family. One family which is completely symmetrized versions of Bacon-Shor codes (parameterized by \(t\)) protects against arbitrary weight-\(t\) spin errors. Additionally, codes with large enough length \((t+1)(3t+1)+t\) can approximately correct \(t\) spontaneous decay errors.

Decoding

For a family of shifted gnu codes, decoding can be done using projection, probability amplitude rebalancing, and gate teleportation in time \(O(n^2)\) [3].

Notes

The degree of entanglement in (non-concatenated) GNU codes scales at most logarithmically in their distance [4; Appx. D].

Cousins

Primary Hierarchy

Parents
Qudit GNU codes encoding logical qubits reduce to GNU codes.
GNU PI code
Children
The four-qubit single-deletion code is a GNU code for \(g=m=2\) [3].
The \(((9,2,3))\) Ruskai code is a GNU PI code [1].
GNU codewords for \(g=1\) reduce to the phase-flip repetition code.

References

[1]
Y. Ouyang, “Permutation-invariant quantum codes”, Physical Review A 90, (2014) arXiv:1302.3247 DOI
[2]
Y. Ouyang and J. Fitzsimons, “Permutation-invariant codes encoding more than one qubit”, Physical Review A 93, (2016) arXiv:1512.02469 DOI
[3]
Y. Ouyang, “Permutation-invariant quantum coding for quantum deletion channels”, 2021 IEEE International Symposium on Information Theory (ISIT) 1499 (2021) arXiv:2102.02494 DOI
[4]
S. Bravyi, D. Lee, Z. Li, and B. Yoshida, “How much entanglement is needed for quantum error correction?”, (2024) arXiv:2405.01332
[5]
A. Aydin, M. A. Alekseyev, and A. Barg, “A family of permutationally invariant quantum codes”, Quantum 8, 1321 (2024) arXiv:2310.05358 DOI
[6]
Y. Ouyang, “Quantum storage in quantum ferromagnets”, Physical Review B 103, (2021) arXiv:1904.01458 DOI
[7]
T. Holstein and H. Primakoff, “Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet”, Physical Review 58, 1098 (1940) DOI
[8]
C. D. Cushen and R. L. Hudson, “A quantum-mechanical central limit theorem”, Journal of Applied Probability 8, 454 (1971) DOI
[9]
V. V. Albert et al., “Performance and structure of single-mode bosonic codes”, Physical Review A 97, (2018) arXiv:1708.05010 DOI
[10]
Y. Ouyang and G. K. Brennen, “Finite-round quantum error correction on symmetric quantum sensors”, (2024) arXiv:2212.06285
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: gnu_permutation_invariant

Cite as:
“GNU PI code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/gnu_permutation_invariant
BibTeX:
@incollection{eczoo_gnu_permutation_invariant, title={GNU PI code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/gnu_permutation_invariant} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/gnu_permutation_invariant

Cite as:

“GNU PI code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/gnu_permutation_invariant

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/permutation_invariant/gnu/gnu_permutation_invariant.yml.