[Jump to code hierarchy]

Bravyi-Bacon-Shor (BBS) code[1]

Alternative names: Generalized Bacon-Shor code.

Description

An \([[n,k,d]]\) CSS subsystem stabilizer code generalizing Bacon-Shor codes to a larger set of qubit geometries. Defined through a binary matrix \(A\) such that physical qubits live on sites \((i,j)\) whenever \(A_{i,j}=1\). The gauge group is generated by 2-qubit operators, including \(XX\) interations between any two qubits sharing a column in \(A\), and \(ZZ\) interations between two qubits sharing a row. The code parameters are: \(n=\sum_{i,j}A_{i,j}\), \(k=\text{rank}(A)\), and the distance is the minimum weight of any row or column.

Protection

Detects errors on \(d-1\) qubits, corrects errors on \(\left\lfloor (d-1)/2 \right\rfloor\) qubits, where \(d\) is the minimum weight of a row or column in \(A\) [2].

Rate

A class of BBS codes [3] saturate the subsystem bound \(kd = O(n)\) [1].

Cousins

  • Subsystem hypergraph product (SHP) code— The BBS code construction can utilize different classical codes in different rows and columns of \(A\), while the subsystem construction does not; see [1; pg. 4]. Subsystem hypergraph product and BBS codes have been numerically compared [2].
  • Commuting-projector Hamiltonian code— Ground-state spaces of commuting-projector Hamiltonians with weight-two (two-body) terms cannot be used to suppress errors in adiabatic quantum computation [4], but this can be circumvented with excited-state subspaces [5] or ground-state subspaces of subsystem code Hamiltonians, e.g., using BBS codes [6,7].

References

[1]
S. Bravyi, “Subsystem codes with spatially local generators”, Physical Review A 83, (2011) arXiv:1008.1029 DOI
[2]
M. Li and T. J. Yoder, “A Numerical Study of Bravyi-Bacon-Shor and Subsystem Hypergraph Product Codes”, (2020) arXiv:2002.06257
[3]
T. J. Yoder, “Optimal quantum subsystem codes in two dimensions”, Physical Review A 99, (2019) arXiv:1901.06319 DOI
[4]
I. Marvian and D. A. Lidar, “Quantum Error Suppression with Commuting Hamiltonians: Two Local is Too Local”, Physical Review Letters 113, (2014) arXiv:1410.5487 DOI
[5]
Y. Cao, S. Liu, H. Deng, Z. Xia, X. Wu, and Y.-X. Wang, “Robust analog quantum simulators by quantum error-detecting codes”, (2024) arXiv:2412.07764
[6]
Z. Jiang and E. G. Rieffel, “Non-commuting two-local Hamiltonians for quantum error suppression”, Quantum Information Processing 16, (2017) arXiv:1511.01997 DOI
[7]
M. Marvian and D. A. Lidar, “Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes”, Physical Review Letters 118, (2017) arXiv:1606.03795 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: bravyi_bacon_shor

Cite as:
“Bravyi-Bacon-Shor (BBS) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bravyi_bacon_shor
BibTeX:
@incollection{eczoo_bravyi_bacon_shor, title={Bravyi-Bacon-Shor (BBS) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/bravyi_bacon_shor} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/bravyi_bacon_shor

Cite as:

“Bravyi-Bacon-Shor (BBS) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bravyi_bacon_shor

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/subsystem/qldpc/bbs/bravyi_bacon_shor.yml.