Trapezoid subsystem code[1,2] 

Description

A member of a family of BBS codes with weight-two (two-body) gauge generators designed to suppress errors in adiabatic quantum computation.

The codes consist of the family of \([[4k+2l, 2k, g, 2]]\) BBS codes for even numbers of logical qubits and the family of \([[4k+2l-2, 2k-1, g, 2]]\) BBS codes for odd numbers of logical qubits, where \(k\) and \(l\) are integers satisfying \(l \leq \lceil (m-1)/2 \rceil\) with \(m\) either \(2k+1\) or \(2k\).

Gates

Single-qubit and two-qubit logical operators are two-local.

Parents

Child

  • \([[6,2,3,2]]\) BBS code — The even-logical-qubit trapezoid family at \(l=k=1\) reduces to the \([[6,2,3,2]]\) BBS code.

Cousins

References

[1]
M. Marvian and S. Lloyd, “Robust universal Hamiltonian quantum computing using two-body interactions”, (2019) arXiv:1911.01354
[2]
P. Singkanipa, Z. Xia, and D. A. Lidar, “Families of \(d=2\) 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions”, (2024) arXiv:2412.06744
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: trapezoid

Cite as:
“Trapezoid subsystem code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/trapezoid
BibTeX:
@incollection{eczoo_trapezoid, title={Trapezoid subsystem code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/trapezoid} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/trapezoid

Cite as:

“Trapezoid subsystem code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/trapezoid

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/subsystem/qldpc/bbs/trapezoid.yml.