[Jump to code hierarchy]

Subsystem CSS code[13]

Description

Subsystem stabilizer code which admits a set of gauge-group generators which consist of either all-\(Z\) or all-\(X\) Pauli strings. This ensures that the code's stabilizer group is also CSS.

The gauge group generators can be expressed as a matrix using the symplectic reprensetation. This matrix is of the form \begin{align} G=\begin{pmatrix}0 & G_{Z}\\ G_{X} & 0 \end{pmatrix}~. \label{eq:parity} \tag*{(1)}\end{align} The two matrix blocks, \(G_{Z}\) and \(G_X\), correspond to the parity-check matrices of two binary linear codes, an \([n,k_X,d_X]\) code \(C_X\) and \([n,k_Z,d_Z]\) code \(C_Z\), respectively. Code parameters and basis states can be expressed in terms of only data associated with these two classical codes [1,2,4].

Protection

For any code whose gauge group is generated by \(XX\) and \(ZZ\), the weight of an \(X\)-type (\(Z\)-type) single-qubit bare-logical operator is lower-bounded by the number of \(Z\)-type (\(X\)-type) bare-logical operators acting on its supporting logical qubits [5,6].

Decoding

Steane-type decoder utilizing data from the underlying classical codes [4].

Cousin

  • Qubit CSS code— Subsystem qubit CSS codes reduce to (subspace) CSS qubit codes when there is no gauge subsystem.

Primary Hierarchy

Parents
Subsystem CSS codes are subsystem stabilizer codes whose gauge groups admit a generating set of pure-\(X\) and pure-\(Z\) Pauli strings. Any \([[n,k,r,d]]\) subsystem stabilizer code can be mapped onto a \([[2n,2k,2r,\geq d]]\) subsystem CSS code via symplectic doubling, which preserves geometric locality of a code up to a constant factor. Every subsystem stabilizer code can be constructed from two nested subsystem CSS codes satisfying certain constraints [4].
Subsystem modular-qudit CSS codes reduce to subsystem qubit CSS codes for \(q=2\).
Subsystem Galois-qudit CSS codes reduce to subsystem qubit CSS codes for \(q=2\).
Subsystem CSS code
Children

References

[1]
A. Klappenecker and P. K. Sarvepalli, “Clifford Code Constructions of Operator Quantum Error Correcting Codes”, (2006) arXiv:quant-ph/0604161
[2]
S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “Subsystem Codes”, (2006) arXiv:quant-ph/0610153
[3]
S. A. Aly and A. Klappenecker, “Constructions of Subsystem Codes over Finite Fields”, (2008) arXiv:0811.1570
[4]
M. L. Liu, N. Tantivasadakarn, and V. V. Albert, “Subsystem CSS codes, a tighter stabilizer-to-CSS mapping, and Goursat's Lemma”, Quantum 8, 1403 (2024) arXiv:2311.18003 DOI
[5]
M. Marvian and S. Lloyd, “Robust universal Hamiltonian quantum computing using two-body interactions”, (2019) arXiv:1911.01354
[6]
P. Lisonek, A. Roy, and S. Trandafir, private communication, 2019
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: subsystem_css

Cite as:
“Subsystem CSS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/subsystem_css
BibTeX:
@incollection{eczoo_subsystem_css, title={Subsystem CSS code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/subsystem_css} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/subsystem_css

Cite as:

“Subsystem CSS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/subsystem_css

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/subsystem/subsystem_css.yml.