Description
An approximate qubit code obtained from a numerical optimization involving a reinforcement learning agent.
Protection
Depends on the parameter being optimized.
Rate
Neural network codes can be obtained by optimizing the coherent information [2].
Parents
Cousins
- Kitaev surface code — Reinforcement learners can be used to optimize the geometry of the surface code to be more suited to a noise channel [3].
- Numerically optimized bosonic code — Numerically optimized bosonic codes can be obtained via reinforcement learning [4,5].
References
- [1]
- T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, “Reinforcement Learning with Neural Networks for Quantum Feedback”, Physical Review X 8, (2018) arXiv:1802.05267 DOI
- [2]
- J. Bausch and F. Leditzky, “Quantum codes from neural networks”, New Journal of Physics 22, 023005 (2020) arXiv:1806.08781 DOI
- [3]
- H. P. Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel, and N. Friis, “Optimizing Quantum Error Correction Codes with Reinforcement Learning”, Quantum 3, 215 (2019) arXiv:1812.08451 DOI
- [4]
- Z. Wang, T. Rajabzadeh, N. Lee, and A. H. Safavi-Naeini, “Automated discovery of autonomous quantum error correction schemes”, (2021) arXiv:2108.02766
- [5]
- Y. Zeng, Z.-Y. Zhou, E. Rinaldi, C. Gneiting, and F. Nori, “Approximate Autonomous Quantum Error Correction with Reinforcement Learning”, Physical Review Letters 131, (2023) arXiv:2212.11651 DOI
Page edit log
- Victor V. Albert (2024-01-08) — most recent
Cite as:
“Neural network quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/reinforcement_learning