[Jump to code hierarchy]

Neural network quantum code[13]

Description

An approximate qubit code obtained from a numerical optimization involving a reinforcement learning agent.

Protection

Depends on the parameter being optimized.

Rate

Neural network codes can be obtained by optimizing the coherent information [2].

Encoding

Both codes and encoding circuits can be obtained via a reinforcement learning agent [4].

Notes

See review on the use of artificial intelligence in quantum error correction [5].

Cousins

References

[1]
T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, “Reinforcement Learning with Neural Networks for Quantum Feedback”, Physical Review X 8, (2018) arXiv:1802.05267 DOI
[2]
J. Bausch and F. Leditzky, “Quantum codes from neural networks”, New Journal of Physics 22, 023005 (2020) arXiv:1806.08781 DOI
[3]
H. P. Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel, and N. Friis, “Optimizing Quantum Error Correction Codes with Reinforcement Learning”, Quantum 3, 215 (2019) arXiv:1812.08451 DOI
[4]
J. Olle, R. Zen, M. Puviani, and F. Marquardt, “Simultaneous Discovery of Quantum Error Correction Codes and Encoders with a Noise-Aware Reinforcement Learning Agent”, (2024) arXiv:2311.04750
[5]
Z. Wang and H. Tang, “Artificial Intelligence for Quantum Error Correction: A Comprehensive Review”, (2024) arXiv:2412.20380
[6]
Z. Wang, T. Rajabzadeh, N. Lee, and A. H. Safavi-Naeini, “Automated discovery of autonomous quantum error correction schemes”, (2021) arXiv:2108.02766
[7]
Y. Zeng, Z.-Y. Zhou, E. Rinaldi, C. Gneiting, and F. Nori, “Approximate Autonomous Quantum Error Correction with Reinforcement Learning”, Physical Review Letters 131, (2023) arXiv:2212.11651 DOI
[8]
V. P. Su, C. Cao, H.-Y. Hu, Y. Yanay, C. Tahan, and B. Swingle, “Discovery of Optimal Quantum Error Correcting Codes via Reinforcement Learning”, (2023) arXiv:2305.06378
[9]
C. Mauron, T. Farrelly, and T. M. Stace, “Optimization of Tensor Network Codes with Reinforcement Learning”, (2023) arXiv:2305.11470
[10]
C. Ruiz-Gonzalez, S. Arlt, J. Petermann, S. Sayyad, T. Jaouni, E. Karimi, N. Tischler, X. Gu, and M. Krenn, “Digital Discovery of 100 diverse Quantum Experiments with PyTheus”, Quantum 7, 1204 (2023) arXiv:2210.09980 DOI
[11]
B. C. A. Freire, N. Delfosse, and A. Leverrier, “Optimizing hypergraph product codes with random walks, simulated annealing and reinforcement learning”, (2025) arXiv:2501.09622
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: reinforcement_learning

Cite as:
“Neural network quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/reinforcement_learning
BibTeX:
@incollection{eczoo_reinforcement_learning, title={Neural network quantum code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/reinforcement_learning} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/reinforcement_learning

Cite as:

“Neural network quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/reinforcement_learning

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/reinforcement_learning.yml.