Description
A QLDPC code such that cyclic shifts of the subsystems by \(\ell\geq 1\) leave the codespace invariant. Such codes have circulant stabilizer generator matrices [1,2].Rate
There exist QC-QLDPC codes that achieve the Hashing bound [3].Cousins
- Quasi-cyclic LDPC (QC-LDPC) code— QC-QLDPC codes are quantum versions of QC-LDPC codes. QC-LDPC codes can be used to make qubit QLDPC codes using various non-CSS constructions [4]. There exist explicit constructions of both whose parity-check (stabilizer generator) matrices have column weight 2 and girth 12 [5].
- Galois-qudit BCH code— Some Galois-qudit BCH codes are QC-QLDPC [6; Ch. 16].
Primary Hierarchy
Parents
Quasi-cyclic QLDPC (QC-QLDPC) code
Children
Lattice stabilizer codeBB Twist-defect color Twist-defect surface CDSC Kitaev surface Fracton stabilizer
Lattice stabilizer codes are QLDPC codes that are invariant under translations by a lattice unit cell.
References
- [1]
- M. Hagiwara and H. Imai, “Quantum Quasi-Cyclic LDPC Codes”, 2007 IEEE International Symposium on Information Theory 806 (2007) arXiv:quant-ph/0701020 DOI
- [2]
- K. Kasai, M. Hagiwara, H. Imai, and K. Sakaniwa, “Quantum Error Correction Beyond the Bounded Distance Decoding Limit”, IEEE Transactions on Information Theory 58, 1223 (2012) arXiv:1007.1778 DOI
- [3]
- D. Komoto and K. Kasai, “Quantum Error Correction near the Coding Theoretical Bound”, (2025) arXiv:2412.21171
- [4]
- P. Tan and J. Li, “Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions”, IEEE Transactions on Information Theory 56, 476 (2010) DOI
- [5]
- D. Komoto and K. Kasai, “Explicit Construction of Classical and Quantum Quasi-Cyclic Low-Density Parity-Check Codes with Column Weight 2 and Girth 12”, (2025) arXiv:2501.13444
- [6]
- S. A. Aly, “On Quantum and Classical Error Control Codes: Constructions and Applications”, (2008) arXiv:0812.5104
Page edit log
- Victor V. Albert (2024-08-01) — most recent
Cite as:
“Quasi-cyclic QLDPC (QC-QLDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/quasi_cyclic_qldpc