Array-based LDPC (AB-LDPC) code[1,2] 


QC-LDPC code constructed deterministically from a disk array code known as a B-code. Its parity-check matrix admits a compact representation [3] and is related to RS codes.


Certain AB-LDPC codes have been proposed to be used for DSL transmission [4].




  • B-code — AB-LDPC codes are constructed from certain classes of B-codes. B-codes can be viewed as binary codes by mapping their ring elements to permutation matrices (cf. lifting). The resulting codes turn out to be LDPC [2].


Fan, John L. "Array codes as low-density parity-check codes." Proc. 2nd Int. Symp. on Turbo Codes & Related Topics, Brest, France, Sept. 2000.
J. L. Fan, “Array Codes as LDPC Codes”, Constrained Coding and Soft Iterative Decoding 195 (2001) DOI
T. Mittelholzer, “Efficient encoding and minimum distance bounds of Reed-Solomon-type array codes”, Proceedings IEEE International Symposium on Information Theory, DOI
E. Eleftheriou and S. Olcer, “Low-density parity-check codes for digital subscriber lines”, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333) DOI
Page edit log

Your contribution is welcome!

on (edit & pull request)— see instructions

edit on this site

Zoo Code ID: array_ldpc

Cite as:
“Array-based LDPC (AB-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023.
@incollection{eczoo_array_ldpc, title={Array-based LDPC (AB-LDPC) code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Array-based LDPC (AB-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023.