Hybrid QECC[14] 

Description

A quantum code which encodes both quantum and classical information.

A simple example of a hybrid QECC encodes a single qubit and a single classical bit. A different quantum code \(\mathsf{C}_j\) is associated with each of the two values \(j\in\{0,1\}\) of the classical bit. The error words corresponding to correctable errors must satisfy the Knill-Laflamme conditions for each code [5; Eq. (3)], and error words beloning to different codes must be orthogonal to each other [5; Eq. (4)]. The corresponding decomposition of the Hilbert space \(\mathsf{H}\) is \begin{align} \mathsf{H} = \mathsf{C}_{1}\oplus\mathsf{C}_{2}\oplus\mathsf{C}^{\perp}~, \tag*{(1)}\end{align} where \(\mathsf{C}^\perp\) is the combined error space of both codes.

Rate

The capacity of a hybrid quantum memory is determined by a convex region in the classical-quantum entropy plane [1]. The quantum capacity for simultaneous transmission of classical and quantum information has been derived [2]. The existence of a hybrid code protecting against a channel depends on certain matricial ranges [6].

Parent

  • Operator-algebra QECC (OAQECC) — An OAQECC which has no gauge structure (e.g., gauge qubits) but has a block structure that corresponds to a classical code is a hybrid QECC.

Child

Cousins

  • Quantum error-correcting code (QECC) — A hybrid QECC storing no classical information reduces to a QECC. Conversely, any QECC can be converted into a hybrid QECC by using a portion of its logical subspace to store only classical information.
  • Classical-quantum (c-q) code — A hybrid QECC storing no quantum information reduces to a c-q code.
  • Entanglement-assisted (EA) hybrid QECC — EA hybrid codes utilize additional ancillary subsystems in a pre-shared entangled state, but reduce to hybrid QECCs when said subsystems are interpreted as noiseless physical subsystems.

References

[1]
G. Kuperberg, “The capacity of hybrid quantum memory”, (2003) arXiv:quant-ph/0203105
[2]
I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information”, (2004) arXiv:quant-ph/0311131
[3]
C. Bény, A. Kempf, and D. W. Kribs, “Generalization of Quantum Error Correction via the Heisenberg Picture”, Physical Review Letters 98, (2007) arXiv:quant-ph/0608071 DOI
[4]
I. Kremsky, M.-H. Hsieh, and T. A. Brun, “Classical enhancement of quantum-error-correcting codes”, Physical Review A 78, (2008) arXiv:0802.2414 DOI
[5]
M. Grassl, S. Lu, and B. Zeng, “Codes for simultaneous transmission of quantum and classical information”, 2017 IEEE International Symposium on Information Theory (ISIT) (2017) arXiv:1701.06963 DOI
[6]
D. W. Kribs, N. Cao, C.-K. Li, Y.-T. Poon, B. Zeng, and M. Nelson, “Higher Rank Matricial Ranges and Hybrid Quantum Error Correction”, (2019) arXiv:1911.12744
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hybridqecc

Cite as:
“Hybrid QECC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/hybridqecc
BibTeX:
@incollection{eczoo_hybridqecc, title={Hybrid QECC}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hybridqecc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hybridqecc

Cite as:

“Hybrid QECC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/hybridqecc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/hybridqecc.yml.