Description
Code that encodes quantum and classical information and requires pre-shared entanglement for transmission.
EA hybrid block quantum codes on \(n\) Galois qubits of dimensional \(q\) are denoted by \(((n,k:c,d;e))_q\), where \(k\) (\(c\)) is the number of encoded qubits (classical bits), where \(d\) is the distance, and where \(e\) is the required number of pre-shared ebits. Similarly, block codes on \(n\) modular qudits are denoted by \(((n,k:c,d;e))_{\mathbb{Z}_q}\).
In alternative conventions (not used here), EA hybrid codes are called entanglement-assisted classical-quantum (EACQ) codes. Here, we use the term classical-quantum for codes for transmitting classical information over quantum channels.
Protection
Rate
Parent
- Entanglement-assisted operator-algebra QECC (EAOAQECC) — An EAOAQECC that has no gauge structure (e.g., gauge qubits), that has a block structure that corresponds to a classical code, and that utilizes pre-shared entanglement is an EA hybrid QECC.
Cousins
- Hybrid QECC — EA hybrid codes utilize additional ancillary subsystems in a pre-shared entangled state, but reduce to hybrid QECCs when said subsystems are interpreted as noiseless physical subsystems.
- Entanglement-assisted (EA) QECC — An EA hybrid QECC storing no classical information reduces to an EA QECC. Conversely, any EA QECC can be converted into an EA hybrid QECC by using a portion of its logical subspace to store only classical information.
References
- [1]
- I. Kremsky, M.-H. Hsieh, and T. A. Brun, “Classical enhancement of quantum-error-correcting codes”, Physical Review A 78, (2008) arXiv:0802.2414 DOI
- [2]
- M.-H. Hsieh, “Entanglement-assisted Coding Theory”, (2008) arXiv:0807.2080
- [3]
- A. Nemec and A. Klappenecker, “Infinite Families of Quantum-Classical Hybrid Codes”, (2020) arXiv:1911.12260
- [4]
- M. Mamindlapally and A. Winter, “Singleton Bounds for Entanglement-Assisted Classical and Quantum Error Correcting Codes”, IEEE Transactions on Information Theory 69, 5857 (2023) arXiv:2202.02184 DOI
- [5]
- M.-H. Hsieh and M. M. Wilde, “Entanglement-Assisted Communication of Classical and Quantum Information”, IEEE Transactions on Information Theory 56, 4682 (2010) arXiv:0811.4227 DOI
- [6]
- Min-Hsiu Hsieh and M. M. Wilde, “Trading classical communication, quantum communication, and entanglement in quantum Shannon theory”, IEEE Transactions on Information Theory 56, 4705 (2010) arXiv:0901.3038 DOI
- [7]
- M.-H. Hsieh and M. M. Wilde, “Public and private communication with a quantum channel and a secret key”, Physical Review A 80, (2009) arXiv:0903.3920 DOI
- [8]
- J. Yard, P. Hayden, and I. Devetak, “Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions”, IEEE Transactions on Information Theory 54, 3091 (2008) arXiv:quant-ph/0501045 DOI
Page edit log
- Victor V. Albert (2022-05-12) — most recent
Cite as:
“Entanglement-assisted (EA) hybrid QECC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eacq
Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/eacq.yml.