Entanglement-assisted (EA) hybrid quantum code[13] 

Description

Code that encodes quantum and classical information and requires pre-shared entanglement for transmission.

EQ hybrid block quantum codes on \(n\) Galois qubits of dimensional \(q\) are denoted by \(((n,k:c,d;e))_q\), where \(k\) (\(c\)) is the number of encoded qubits (classical bits), where \(d\) is the distance, and where \(e\) is the required number of pre-shared ebits. Similarly, block codes on \(n\) modular qudits are denoted by \(((n,k:c,d;e))_{\mathbb{Z}_q}\).

In alternative conventions (not used here), EA hybrid codes are called entanglement-assisted classical-quantum (EACQ) codes. Here, we use the term classical-quantum for codes for transmitting classical information over quantum channels.

Protection

The EQ hybrid Singleton bound represents a triple trade-off region in the combined classical-bit, qubit, and e-bit space [4].

Rate

Tradeoff between classical communication, quantum communication, and entanglement distribution has been examined [57]; see also Ref. [8].

Parent

Cousins

  • Hybrid QECC — EQ hybrid codes utilize additional ancillary subsystems in a pre-shared entangled state, but reduce to hybrid QECCs when said subsystems are interpreted as noiseless physical subsystems.
  • Entanglement-assisted (EA) QECC — An EA hybrid QECC storing no classical information reduces to an EA QECC. Conversely, any EA QECC can be converted into an EA hybrid QECC by using a portion of its logical subspace to store only classical information.

References

[1]
I. Kremsky, M.-H. Hsieh, and T. A. Brun, “Classical enhancement of quantum-error-correcting codes”, Physical Review A 78, (2008) arXiv:0802.2414 DOI
[2]
M.-H. Hsieh, “Entanglement-assisted Coding Theory”, (2008) arXiv:0807.2080
[3]
A. Nemec and A. Klappenecker, “Infinite Families of Quantum-Classical Hybrid Codes”, (2020) arXiv:1911.12260
[4]
M. Mamindlapally and A. Winter, “Singleton Bounds for Entanglement-Assisted Classical and Quantum Error Correcting Codes”, IEEE Transactions on Information Theory 69, 5857 (2023) arXiv:2202.02184 DOI
[5]
M.-H. Hsieh and M. M. Wilde, “Entanglement-Assisted Communication of Classical and Quantum Information”, IEEE Transactions on Information Theory 56, 4682 (2010) arXiv:0811.4227 DOI
[6]
Min-Hsiu Hsieh and M. M. Wilde, “Trading classical communication, quantum communication, and entanglement in quantum Shannon theory”, IEEE Transactions on Information Theory 56, 4705 (2010) arXiv:0901.3038 DOI
[7]
M.-H. Hsieh and M. M. Wilde, “Public and private communication with a quantum channel and a secret key”, Physical Review A 80, (2009) arXiv:0903.3920 DOI
[8]
J. Yard, P. Hayden, and I. Devetak, “Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions”, IEEE Transactions on Information Theory 54, 3091 (2008) arXiv:quant-ph/0501045 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: eacq

Cite as:
“Entanglement-assisted (EA) hybrid quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eacq
BibTeX:
@incollection{eczoo_eacq, title={Entanglement-assisted (EA) hybrid quantum code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/eacq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/eacq

Cite as:

“Entanglement-assisted (EA) hybrid quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eacq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/eacq.yml.