Description
Code designed specifically for transmission of classical information through non-classical channels, e.g., quantum channels, hybrid quantum-classical channels, or channels with classical inputs and quantum outputs. Such codes include maps from a classical alphabet into a quantum Hilbert space.Rate
The Holevo channel capacity, \begin{align} C=\lim_{n\to\infty}\frac{1}{n}\chi\left({\cal N}^{\otimes n}\right)~, \tag*{(1)}\end{align} where \(\chi\) is the Holevo information, is the highest rate of classical information transmission through a quantum channel with arbitrarily small error rate [1–3].
This capacity is equal to the single-letter Holevo information of a single copy of the channel, \(\chi(\cal{N})\), for all known deterministically constructed channels. However, it is known to be superadditive, i.e., not equal to the single-copy case, for particular random channels [4].
Corrections to the Holevo capacity and tradeoff between decoding error, code rate and code length are determined in quantum generalizations of small [5], moderate [6,7], and large [8] deviation analysis. Bounds exist on the one-shot capacity, i.e., the achievability of classical codes given only one use of the quantum channel. The ideal decoding error is suppressed exponentially with the number of subsystems \(n\) (for c-q block codes), and the achievable exponent has been studied in Refs. [9–17]; see [16; Table 2] for a summary. Achievable error exponents for communication are related to those for privacy amplification [18]. In the high-rate case, a lower [19] and upper [20] bound on the error exponent for general channels matches a conjecture by Holevo [10].
Unambiguous state discrimination (USD) can be used to achieve Holevo capacity on a general pure-state c-q channel [21].
Decoding
Unambiguous state discrimination (USD) [21].Cousin
- Hybrid QECC— A hybrid QECC storing no quantum information reduces to a c-q code.
Member of code lists
Primary Hierarchy
References
- [1]
- A. S. Holevo, “Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel”, Probl. Peredachi Inf., 9:3 (1973), 3–11; Problems Inform. Transmission, 9:3 (1973), 177–183
- [2]
- B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels”, Physical Review A 56, 131 (1997) DOI
- [3]
- A. S. Holevo, “The capacity of the quantum channel with general signal states”, IEEE Transactions on Information Theory 44, 269 (1998) DOI
- [4]
- M. B. Hastings, “Superadditivity of communication capacity using entangled inputs”, Nature Physics 5, 255 (2009) arXiv:0809.3972 DOI
- [5]
- M. Tomamichel and V. Y. F. Tan, “Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels”, Communications in Mathematical Physics 338, 103 (2015) arXiv:1308.6503 DOI
- [6]
- C. T. Chubb, V. Y. F. Tan, and M. Tomamichel, “Moderate Deviation Analysis for Classical Communication over Quantum Channels”, Communications in Mathematical Physics 355, 1283 (2017) arXiv:1701.03114 DOI
- [7]
- X. Wang, K. Fang, and M. Tomamichel, “On Converse Bounds for Classical Communication Over Quantum Channels”, IEEE Transactions on Information Theory 65, 4609 (2019) arXiv:1709.05258 DOI
- [8]
- M. Mosonyi and T. Ogawa, “Strong Converse Exponent for Classical-Quantum Channel Coding”, Communications in Mathematical Physics 355, 373 (2017) arXiv:1409.3562 DOI
- [9]
- M. V. Burnashev and A. S. Holevo, “On Reliability Function of Quantum Communication Channel”, (1998) arXiv:quant-ph/9703013
- [10]
- A. S. Holevo, “Reliability function of general classical-quantum channel”, IEEE Transactions on Information Theory 46, 2256 (2000) arXiv:quant-ph/9907087 DOI
- [11]
- M. Hayashi and H. Nagaoka, “A general formula for the classical capacity of a general quantum channel”, Proceedings IEEE International Symposium on Information Theory, arXiv:quant-ph/0206186 DOI
- [12]
- M. Hayashi, “Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding”, Physical Review A 76, (2007) arXiv:quant-ph/0611013 DOI
- [13]
- M. Hayashi, “Universal Coding for Classical-Quantum Channel”, Communications in Mathematical Physics 289, 1087 (2009) arXiv:0805.4092 DOI
- [14]
- L. Wang and R. Renner, “One-Shot Classical-Quantum Capacity and Hypothesis Testing”, Physical Review Letters 108, (2012) arXiv:1007.5456 DOI
- [15]
- S. Beigi and A. Gohari, “Quantum Achievability Proof via Collision Relative Entropy”, IEEE Transactions on Information Theory 60, 7980 (2014) arXiv:1312.3822 DOI
- [16]
- H.-C. Cheng, “Simple and Tighter Derivation of Achievability for Classical Communication Over Quantum Channels”, PRX Quantum 4, (2023) arXiv:2208.02132 DOI
- [17]
- S. Beigi and M. Tomamichel, “Lower Bounds on Error Exponents via a New Quantum Decoder”, (2023) arXiv:2310.09014
- [18]
- J. M. Renes, “Achievable error exponents of data compression with quantum side information and communication over symmetric classical-quantum channels”, 2023 IEEE Information Theory Workshop (ITW) 170 (2023) arXiv:2207.08899 DOI
- [19]
- M. Dalai, “Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels”, IEEE Transactions on Information Theory 59, 8027 (2013) arXiv:1201.5411 DOI
- [20]
- K. Li and D. Yang, “Reliability Function of Classical-Quantum Channels”, (2024) arXiv:2407.12403
- [21]
- M. Takeoka, H. Krovi, and S. Guha, “Achieving the Holevo capacity of a pure state classical-quantum channel via unambiguous state discrimination”, 2013 IEEE International Symposium on Information Theory 166 (2013) DOI
- [22]
- M. K. Patra and S. L. Braunstein, “An algebraic framework for information theory: Classical Information”, (2009) arXiv:0910.1536
- [23]
- G. Kuperberg and N. Weaver, “A von Neumann algebra approach to quantum metrics”, (2010) arXiv:1005.0353
Page edit log
- Victor V. Albert (2022-11-08) — most recent
Cite as:
“Classical-quantum (c-q) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/classical_into_quantum