Spherical design code[1] 


Spherical code whose codewords are uniformly distributed in a way that is useful for determining averages of polynomials over the real sphere. A spherical code is a spherical design of strength \(t\), i.e., a \(t\)-design, if the average of any polynomial of degree up to \(t\) over its codewords is equal to the average over the entire sphere.

Spherical designs can also be defined for complex spheres, and there are ways to convert between the two [2; Lemma 3.6].


The number of points \(|X|\) of an \(n\)-dimensional spherical design \(X\) is bounded by [1] \begin{align} |X|\geq\begin{cases} {n+s-1 \choose n-1}+{n+s-2 \choose n-1} & t=2s\\ 2{n+s-1 \choose n-1} & t=2s+1 \end{cases}~, \tag*{(1)}\end{align} and designs saturating the above inequality are called tight.


See Refs. [3,4][5; pg. 89] for reviews on spherical designs.




  • Combinatorial design code
  • Slepian group-orbit code — Polynomial invariants of a discrete subgroup \(G\) of the orthogonal group can be used to determine the design strength of orbits of \(G\) [12]. Let \(t+1\) be the degree of the lowest-degree \(G\)-invariant polynomial that is not a polynomial in the norm \(\left\Vert x\right\Vert^2\). Then, any orbit under \(G\) forms a Slepian group-orbit code that is also a spherical \(t\)-design.
  • \(\Lambda_{24}\) Leech lattice-shell code — Smallest-shell \((24,196560,1)\) code is a tight and unique spherical 11-design [5; Ch. 3].


P. Delsarte, J. M. Goethals, and J. J. Seidel, “Spherical codes and designs”, Geometriae Dedicata 6, 363 (1977) DOI
A. Roy and S. Suda, “Complex spherical designs and codes”, (2011) arXiv:1104.4692
E. Bannai and E. Bannai, “A survey on spherical designs and algebraic combinatorics on spheres”, European Journal of Combinatorics 30, 1392 (2009) DOI
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
V. M. Sidelnikov, Journal of Algebraic Combinatorics 10, 279 (1999) DOI
V. M. Sidelnikov, “Orbital spherical 11-designs in which the initial point is a root of an invariant polynomial”, Algebra i Analiz, 11:4 (1999), 183–203; St. Petersburg Math. J., 11:4 (2000), 673–686
H. Cohn et al., “TheD\({}_{\text{4}}\)Root System Is Not Universally Optimal”, Experimental Mathematics 16, 313 (2007) arXiv:math/0607447 DOI
P. Boyvalenkov and D. Danev, “Uniqueness of the 120-point spherical 11-design in four dimensions”, Archiv der Mathematik 77, 360 (2001) DOI
N. J. A. Sloane, R. H. Hardin, and P. Cara, “Spherical designs in four dimensions”, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674) DOI
P. de la Harpe and C. Pache, “Spherical designs and finite group representations (some results of E. Bannai)”, European Journal of Combinatorics 25, 213 (2004) DOI
S. L. Sobolev, “Cubature Formulas on the Sphere Invariant under Finite Groups of Rotations”, Selected Works of S.L. Sobolev 461 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: spherical_design

Cite as:
“Spherical design code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/spherical_design
@incollection{eczoo_spherical_design, title={Spherical design code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/spherical_design} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Spherical design code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/spherical_design

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/spherical/spherical_design.yml.