[Jump to code hierarchy]

Cameron-Goethals-Seidel (CGS) isotropic subspace code[1]

Description

Member of a \((q(q^2-q+1),(q+1)(q^3+1),2-2/q^2)\) family of spherical codes for any prime-power \(q\). Constructed from generalized quadrangles, which in this case correspond to sets of totally isotropic points and lines in the projective space \(PG_{5}(q)\) [2; Exam. 9.4.5]. There exist multiple distinct spherical codes using this construction for \(q>3\) [3].

Protection

CGS isotropic subspace codes saturate the Levenshtein bound [2; pg. 64].

Cousin

Primary Hierarchy

Parents
CGS isotropic subspace codes are the only known spherical sharp configrations not derived from regular polytopes or lattices [3].
Cameron-Goethals-Seidel (CGS) isotropic subspace code
Children
The CGS isotropic subspace code for \(q=2\) reduces to the Hessian polytope.

References

[1]
P. J. Cameron, J. M. Goethals, and J. J. Seidel, “Strongly regular graphs having strongly regular subconstituents”, Journal of Algebra 55, 257 (1978) DOI
[2]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[3]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: cgs_spherical

Cite as:
“Cameron-Goethals-Seidel (CGS) isotropic subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/cgs_spherical
BibTeX:
@incollection{eczoo_cgs_spherical, title={Cameron-Goethals-Seidel (CGS) isotropic subspace code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/cgs_spherical} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/cgs_spherical

Cite as:

“Cameron-Goethals-Seidel (CGS) isotropic subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/cgs_spherical

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/sharp_config/cgs_spherical.yml.