[Jump to code hierarchy]

Two-mode binomial code[1]

Description

Two-mode constant-energy CLY code whose coefficients are square-roots of binomial coefficients.

The simplest two-mode \(S=1\) code is an analogue of the "0-2-4" single-mode binomial code, with codewords \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{2}}\left(|40\rangle+|04\rangle\right)\\ |\overline{1}\rangle&=|22\rangle~. \end{split} \tag*{(1)}\end{align}

An alternative basis for general codewords is \begin{align} |\overline{\mu}\rangle=\frac{1}{2^{J}}\sum_{m=0}^{2J}\left(-1\right)^{\mu m}\sqrt{{2J \choose m}}\left|2J-(S+1)m,(S+1)m\right\rangle~, \tag*{(2)}\end{align} with spacing \(S\) and dephasing error parameter \(N\) such that \(J = \frac{1}{2}(N+1)(S+1)\) [2]. The \(S=0\) version can be obtained by applying a \(50:50\) beamsplitter to the highest-weight Fock states \(|2J,0\rangle\) and \(|0,2J\rangle\) [3]; in this case, codewords are two-mode binomial coherent states [46].

Cousins

References

[1]
I. L. Chuang, D. W. Leung, and Y. Yamamoto, “Bosonic quantum codes for amplitude damping”, Physical Review A 56, 1114 (1997) DOI
[2]
M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M. Girvin, “New Class of Quantum Error-Correcting Codes for a Bosonic Mode”, Physical Review X 6, (2016) arXiv:1602.00008 DOI
[3]
M. Bergmann and P. van Loock, “Quantum error correction against photon loss using NOON states”, Physical Review A 94, (2016) arXiv:1512.07605 DOI
[4]
J. M. Radcliffe, “Some properties of coherent spin states”, Journal of Physics A: General Physics 4, 313 (1971) DOI
[5]
F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, “Atomic Coherent States in Quantum Optics”, Physical Review A 6, 2211 (1972) DOI
[6]
M. Calixto, A. Mayorgas, and J. Guerrero, “Entanglement and U(D)-spin squeezing in symmetric multi-quDit systems and applications to quantum phase transitions in Lipkin–Meshkov–Glick D-level atom models”, Quantum Information Processing 20, (2021) arXiv:2104.10581 DOI
[7]
Y. Xu, Y. Wang, C. Vuillot, and V. V. Albert, “Letting the tiger out of its cage: bosonic coding without concatenation”, (2024) arXiv:2411.09668
[8]
D. M. Gitman and A. L. Shelepin, “Coherent states of SU(N) groups”, Journal of Physics A: Mathematical and General 26, 313 (1993) DOI
[9]
M. Y. Niu, I. L. Chuang, and J. H. Shapiro, “Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators”, Physical Review A 97, (2018) arXiv:1709.05302 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: two-mode_binomial

Cite as:
“Two-mode binomial code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/two-mode_binomial
BibTeX:
@incollection{eczoo_two-mode_binomial, title={Two-mode binomial code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/two-mode_binomial} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/two-mode_binomial

Cite as:

“Two-mode binomial code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/two-mode_binomial

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/fock_state/constant_excitation/two-mode_binomial.yml.