2T-qutrit code[1] 

Description

Two-mode qutrit code constructed out of superpositions of coherent states whose amplitudes make up the binary tetrahedral group \(2T\).

The codespace is a particular three-dimensional subspace of the 24-dimensional two-mode coherent-state subspace, \begin{align} \mathrm{Span}( \{|\sqrt{2} e^{i (2k+1) \pi/4} \alpha\rangle |0\rangle, |0\rangle |\sqrt{2} e^{i (2k+1) \pi/4} \alpha\rangle, |e^{i k\pi/2} \alpha\rangle |e^{i \ell \pi/2} \alpha\rangle \: : \: 0\leq k, \ell \leq 3\}) \tag*{(1)}\end{align} for any \(\alpha \geq 0\). A basis can be constructed whose elements are equal superpositions of coherent states whose amplitudes make up cosets of the quaternion subgroup \(Q\) in \(2T\).

Figure I: Projection of the \( 4\{3\}4 \) polytope with logical constellations marked in different colours.

Gates

Logical phase-flip can be implemented using an excitation-preserving Gaussian transformation. Degree-four polynomial in the lowering operators of the two modes serves as a non-unitary logical bit-flip. Rotations of either mode by \(\pi/4\) are logical gates that swap two logical codewords.

Parent

  • Quantum spherical code (QSC) — The \(2T\)-qutrit is a QSC on the two-dimensional complex sphere whose code constellation is the \(4\{3\}4\) complex polytope.

Cousin

  • Two-mode binomial code — The \(2T\)-qutrit code reduces to the two-mode "0-2-4" binomial code as \(\alpha\to 0\).

References

[1]
A. Denys and A. Leverrier, “The 2T-qutrit, a two-mode bosonic qutrit”, Quantum 7, 1032 (2023) arXiv:2210.16188 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: 2t_qutrit

Cite as:
“2T-qutrit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/2t_qutrit
BibTeX:
@incollection{eczoo_2t_qutrit, title={2T-qutrit code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/2t_qutrit} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/2t_qutrit

Cite as:

“2T-qutrit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/2t_qutrit

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/qsc/2t_qutrit/2t_qutrit.yml.