Magnon code[1] 

Description

An \(n\)-spin approximate code whose codespace of \(k=\Omega(\log n)\) qubits is efficiently described in terms of particular matrix product states or Bethe ansatz tensor networks. Magnon codewords are low-energy excited states of the frustration-free Heisenberg-XXX model Hamiltonian [1].

Protection

Distance \(d=\Omega(n^{1-\nu})\) for any \(\nu\in(0,1)\).

Parents

Cousins

References

[1]
M. Gschwendtner et al., “Quantum error-detection at low energies”, Journal of High Energy Physics 2019, (2019) arXiv:1902.02115 DOI
[2]
X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-dimensional spin systems”, Physical Review B 83, (2011) arXiv:1008.3745 DOI
[3]
N. Schuch, D. Pérez-García, and I. Cirac, “Classifying quantum phases using matrix product states and projected entangled pair states”, Physical Review B 84, (2011) arXiv:1010.3732 DOI
[4]
X. Chen, Z.-C. Gu, and X.-G. Wen, “Complete classification of one-dimensional gapped quantum phases in interacting spin systems”, Physical Review B 84, (2011) arXiv:1103.3323 DOI
[5]
X. Chen et al., “Symmetry protected topological orders and the group cohomology of their symmetry group”, Physical Review B 87, (2013) arXiv:1106.4772 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: mps

Cite as:
“Magnon code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mps
BibTeX:
@incollection{eczoo_mps, title={Magnon code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/mps} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/mps

Cite as:

“Magnon code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mps

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/spins/many_spin/mps.yml.