[Jump to code hierarchy]

Post-selected PI code[1]

Description

PI qubit code whose recovery succeeds at protecting against AD errors with a success probability less than one.

The simplest code admits a codeword basis of \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{3}}\left(|100\rangle+|010\rangle+|001\rangle\right)\\|\overline{1}\rangle&=|111\rangle~. \end{split} \tag*{(1)}\end{align} The code violates the diagonal part of the Knill-Laflamme conditions. Nevertheless, the code admits a probabilistic recovery that protects against single losses and yields an infidelity of order \(O(\gamma^2)\) in the noise rate \(\gamma\). The failure probability of the recovery is of the same order as the probability of the single loss errors, i.e., \(O(\gamma)\).

References

[1]
S. Dutta, A. Jain, and P. Mandayam, “Smallest quantum codes for amplitude damping noise”, (2024) arXiv:2410.00155
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: ampdamp_post_selected

Cite as:
“Post-selected PI code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/ampdamp_post_selected
BibTeX:
@incollection{eczoo_ampdamp_post_selected, title={Post-selected PI code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/ampdamp_post_selected} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/ampdamp_post_selected

Cite as:

“Post-selected PI code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/ampdamp_post_selected

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/permutation_invariant/ampdamp_post_selected.yml.