Clifford group-representation QSC[1] 

Description

QSC whose projection is onto a copy of an irreducible representation of the single-qubit Clifford group \(2O\), taken as the binary octahedral subgroup of the group \(SU(2)\) of Gaussian rotations. Its codewords consist of non-uniform superpositions of coherent states.

Gates

The Clifford group \(2O\) can be realized via Gaussian rotations. The \(T\) and \(CZ\) gates can be realized using quartic Kerr operations [1].

Parents

References

[1]
A. Denys and A. Leverrier, “Multimode bosonic cat codes with an easily implementable universal gate set”, (2023) arXiv:2306.11621
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: clifford_qsc

Cite as:
“Clifford group-representation QSC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/clifford_qsc
BibTeX:
@incollection{eczoo_clifford_qsc, title={Clifford group-representation QSC}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/clifford_qsc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/clifford_qsc

Cite as:

“Clifford group-representation QSC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/clifford_qsc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/coherent_state/clifford_qsc.yml.