[Jump to code hierarchy]

Valence-bond-solid (VBS) code[13]

Description

An \(n\)-qubit approximate \(q\)-dimensional spin code family whose codespace is described in terms of \(SU(q)\) valence-bond-solid (VBS) [4] matrix product states with various boundary conditions. The codes become exact when either \(n\) or \(q\) go to infinity. The original work on these codes studied the \(q=2\) case [1].

Transversal Gates

Two classes of (approximate) VBS codes have \(SU(q)\) transversal gates [3; Tab. III].

Cousins

Primary Hierarchy

Parents
VBS codewords are eigenstates of the frustration-free VBS Hamiltonian [2,3].
VBS codewords are eigenstates of the frustration-free VBS Hamiltonian [2,3].
VBS codes approximately protect against erasures in the thermodynamic limit.
Valence-bond-solid (VBS) code

References

[1]
N. E. Bonesteel, “Chiral spin liquids and quantum error-correcting codes”, Physical Review A 62, (2000) arXiv:quant-ph/0006092 DOI
[2]
D.-S. Wang, G. Zhu, C. Okay, and R. Laflamme, “Quasi-exact quantum computation”, Physical Review Research 2, (2020) arXiv:1910.00038 DOI
[3]
D.-S. Wang, Y.-J. Wang, N. Cao, B. Zeng, and R. Laflamme, “Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes”, New Journal of Physics 24, 023019 (2022) arXiv:2105.14777 DOI
[4]
I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Rigorous Results on Valence-Bond Ground States in Antiferromagnets”, Condensed Matter Physics and Exactly Soluble Models 249 (2004) DOI
[5]
X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-dimensional spin systems”, Physical Review B 83, (2011) arXiv:1008.3745 DOI
[6]
N. Schuch, D. Pérez-García, and I. Cirac, “Classifying quantum phases using matrix product states and projected entangled pair states”, Physical Review B 84, (2011) arXiv:1010.3732 DOI
[7]
X. Chen, Z.-C. Gu, and X.-G. Wen, “Complete classification of one-dimensional gapped quantum phases in interacting spin systems”, Physical Review B 84, (2011) arXiv:1103.3323 DOI
[8]
X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group”, Physical Review B 87, (2013) arXiv:1106.4772 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: vbs

Cite as:
“Valence-bond-solid (VBS) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/vbs
BibTeX:
@incollection{eczoo_vbs, title={Valence-bond-solid (VBS) code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/vbs} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/vbs

Cite as:

“Valence-bond-solid (VBS) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/vbs

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/spins/many_spin/vbs.yml.