Description
Error-detecting six-qubit code with rate \(2/3\) whose codewords are cat/GHZ states. A set of stabilizer generators is \(XXXXXX\) and \(ZZZZZZ\). It is the unique code for its parameters, up to equivalence [5; Tab. III]. Concatenations of this code with itself yield the \([[6^r,4^r,2^r]]\) level-\(r\) many-hypercube code [6].
Stabilizer generators are shown in Figure I. See [6; Appx. B] for a set of logical Paulis.
Encoding
See [6; Fig. 5].Transversal Gates
CNOT and Hadamard gates [6; Appx. B].A \(CZ\) gate implemented by transversal \(S\) and \(S^{\dagger}\) [7]; see also [8].Gates
Universal Clifford gates via the logical circuit synthesis algorithm [9][10; Sec. III].Decoding
Efficient decoder for the many-hypercube code [6].Realizations
Trapped-ion devices: Bayesian quantum phase estimation on a device by Quantinuum [11].Cousins
- Concatenated qubit code— Concatenations of this code with itself yield the level-\(r\) \([[6^r,4^r,2^r]]\) many-hypercube code [6]. The \([[6,4,2]]\) code can be concatenated with the surface code to yield the 6.6.6 color code [12; Appx. A].
- Tensor-network code— The \([[6,4,2]]\) error-detecting code can be constructed out of two \([[4,2,2]]\) codes in the quantum Lego code framework [13].
- \([[4,2,2]]\) Four-qubit code— The \([[6,4,2]]\) error-detecting code can be constructed out of two \([[4,2,2]]\) codes in the quantum Lego code framework [13].
Member of code lists
- 2D stabilizer codes
- Approximate quantum codes
- Color code and friends
- Concatenated quantum codes and friends
- Hamiltonian-based codes
- Quantum codes
- Quantum codes based on homological products
- Quantum codes with notable decoders
- Quantum codes with transversal gates
- Quantum CSS codes
- Quantum LDPC codes
- Quantum MDS codes and friends
- Realized quantum codes
- Small-distance quantum codes and friends
- Stabilizer codes
- Surface code and friends
- Topological codes
Primary Hierarchy
Quantum multi-dimensional parity-check (QMDPC) codeCSS QLDPC Stabilizer Qubit Hamiltonian-based Concatenated quantum Small-distance block quantum QECC Quantum
\([[2m,2m-2,2]]\) error-detecting codeColor Self-complementary qubit Qubit Generalized homological-product QLDPC CSS Stabilizer Hamiltonian-based Quantum MDS Small-distance block quantum Amplitude-damping (AD) QECC AQECC Quantum
Parents
The \([[2m,2m-2,2]]\) error-detecting code for \(m=3\) reduces to the \([[6,4,2]]\) error-detecting code.
Honeycomb (6.6.6) color codeColor Generalized homological-product Twist-defect color Lattice stabilizer QLDPC CSS Stabilizer Qubit Abelian topological Topological Hamiltonian-based QECC Quantum
The \([[6,4,2]]\) error-detecting code is a color code defined on a single hexagon of the 6.6.6 or 4.6.12 tilings. The \([[6,4,2]]\) code can be concatenated with the surface code to yield the 6.6.6 color code [12; Appx. A].
Truncated trihexagonal (4.6.12) color codeColor Generalized homological-product Twist-defect color Lattice stabilizer QLDPC CSS Stabilizer Qubit Abelian topological Topological Hamiltonian-based QECC Quantum
The \([[6,4,2]]\) error-detecting code is a color code defined on a single hexagon of the 6.6.6 or 4.6.12 tilings.
Small-distance qubit stabilizer codeStabilizer Hamiltonian-based Qubit Small-distance block quantum QECC Quantum
\([[6,4,2]]\) error-detecting code
References
- [1]
- A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
- [2]
- D. Gottesman, “Theory of fault-tolerant quantum computation”, Physical Review A 57, 127 (1998) arXiv:quant-ph/9702029 DOI
- [3]
- E. Knill, “Fault-Tolerant Postselected Quantum Computation: Schemes”, (2004) arXiv:quant-ph/0402171
- [4]
- E. Knill, “Fault-Tolerant Postselected Quantum Computation: Threshold Analysis”, (2004) arXiv:quant-ph/0404104
- [5]
- A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [6]
- H. Goto, “High-performance fault-tolerant quantum computing with many-hypercube codes”, Science Advances 10, (2024) arXiv:2403.16054 DOI
- [7]
- H. Chen, M. Vasmer, N. P. Breuckmann, and E. Grant, “Automated discovery of logical gates for quantum error correction (with Supplementary (153 pages))”, Quantum Information and Computation 22, 947 (2022) arXiv:1912.10063 DOI
- [8]
- M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
- [9]
- N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister, “Logical Clifford Synthesis for Stabilizer Codes”, IEEE Transactions on Quantum Engineering 1, 1 (2020) arXiv:1907.00310 DOI
- [10]
- N. Rengaswamy, R. Calderbank, H. D. Pfister, and S. Kadhe, “Synthesis of Logical Clifford Operators via Symplectic Geometry”, 2018 IEEE International Symposium on Information Theory (ISIT) (2018) arXiv:1803.06987 DOI
- [11]
- K. Yamamoto, S. Duffield, Y. Kikuchi, and D. Muñoz Ramo, “Demonstrating Bayesian quantum phase estimation with quantum error detection”, Physical Review Research 6, (2024) arXiv:2306.16608 DOI
- [12]
- B. Criger and B. Terhal, “Noise thresholds for the [4,2,2]-concatenated toric code”, Quantum Information and Computation 16, 1261 (2016) arXiv:1604.04062 DOI
- [13]
- C. Cao and B. Lackey, “Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks”, PRX Quantum 3, (2022) arXiv:2109.08158 DOI
Page edit log
- Victor V. Albert (2024-03-28) — most recent
Cite as:
“\([[6,4,2]]\) error-detecting code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stab_6_4_2