Quantum multi-dimensional parity-check (QMDPC) code[1] 

Description

High-rate low-distance CSS code whose qubits lie on a \(D\)-dimensional rectangle, with \(X\)-type stabilizer generators defined on each \(D-1\)-dimensional rectangle. The \(Z\)-type stabilizer generators are defined via permutations in order to commute with the \(X\)-type generators.

For example, the \(D=2\) square geometry corresponds to a \([[n^2,n^2-4n+2,4]]\) code, with \(X\)-type stabilizer generators defined on rows and columns.

Protection

The general construction for a \(D\)-dimensional rectangle with sides \(n_i\) yields a \([[\prod_{i=1}^{D}n_{i},2\prod_{i=1}^{D}(n_{i}-1)-\prod_{i=1}^{D}n_{i},2^{D}]]\) code family.

Parents

Child

References

[1]
C. Gidney, M. Newman, P. Brooks, and C. Jones, “Yoked surface codes”, (2023) arXiv:2312.04522
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qmdpc

Cite as:
“Quantum multi-dimensional parity-check (QMDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qmdpc
BibTeX:
@incollection{eczoo_qmdpc, title={Quantum multi-dimensional parity-check (QMDPC) code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qmdpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qmdpc

Cite as:

“Quantum multi-dimensional parity-check (QMDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qmdpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/qmdpc.yml.