\([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller code[1; Ch. 7] 

Description

Member of CSS code family constructed with a punctured self-dual RM \([2^r-1,2^{r-1},\sqrt{2}^{r-1}-1]\) code and its even subcode for \(r \geq 2\).

Transversal Gates

All single-qubit Clifford gates.

Parent

  • Quantum Reed-Muller code — The \([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller codes are special cases of the \([[\sum_{i=w+1}^m \binom{m}{i}, \sum_{i=0}^{w} \binom{m}{i}, \sum_{i=w+1}^{r+1} \binom{r+1}{i}]]\) family for \(m \to 2r-1\), \(w \to 0\), and \(r \to r-1\).

Child

References

[1]
J. Preskill. Lecture notes on Quantum Computation. (1997–2020) URL
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: single_qubit_clifford

Cite as:
\([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/single_qubit_clifford
BibTeX:
@incollection{eczoo_single_qubit_clifford, title={\([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/single_qubit_clifford} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/single_qubit_clifford

Cite as:

\([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/single_qubit_clifford

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/rm/single_qubit_clifford.yml.