[Jump to code hierarchy]

Hermitian qubit code[1]

Alternative names: Calderbank-Rains-Shor-Sloane (CRSS) code, \(GF(4)\)-linear stabilizer code, \(M_{3}\) code.

Description

An \([[n,k,d]]\) stabilizer code constructed from a Hermitian self-orthogonal linear quaternary code using the \(GF(4)\) representation.

Hermitian codes are in one-to-one correspondence with Hermitian self-orthogonal additive codes via the \(GF(4)\) representation. Quaternary linear codes are Hermitian self-orthogonal (self-dual) iff they are trace-Hermitian self-orthogonal (self-dual) additive [2; Thm. 27.4.1] ([3; Thm. 9.10.3]). In other words, if the underlying quaternary code is linear, then the field trace can be removed from the definition of inner product.

All code automorphisms lie in the Clifford group [4; Corr. 16].

Protection

A Hermitian self-orthogonal linear \([n,k,d]_{4}\) code yields an \([[n,n-2k]]\) qubit stabilizer code with distance no less than \(d\); this is the qubit Hermitian construction. The parameters satisfy \(k \equiv n\) mod 2 [5].

The stabilizer generator matrix is of the form \begin{align} H=\begin{pmatrix}H\\ \alpha H \end{pmatrix}~, \tag*{(1)}\end{align} where \(H\) is the parity-check matrix of the classical code.

Transversal Gates

All code automorphisms lie in the Clifford group [4; Corr. 16], so transversal physical gates implement only Clifford logical gates.Transversal \(SH\) and \(HS\) "facet" gates (a.k.a. \(M_3\) gates) which cyclically permute Paulis as \(X \to Y\), \(Y \to Z\), and \(Z \to X\) [6; Sec. 8.2].The three-block transversal gate mapping each physical \(X \to XYZ\) and each \(Z \to ZXY\) implements a logical gate [7][8; Exam. 2].A qubit stabilizer code is Hermitian if and only if a transversal \(R\) gate leaves the stabilizer group invariant [5].

Gates

Signed weight enumerators [9] determine performance of magic \(T\)-state distillation protocols [10].

Fault Tolerance

Characterizing fault-tolerant multi-qubit gates under the \(GF(4)\) representation may involve characterizing all global automorphisms of some number of copies of a code that preserve the symplectic inner product [8; pg. 9].

Notes

Tables of \([[n,0,d]]\) Hermitian codes [11,12], corresponding to a self-dual \(GF(4)\) representation, at this website. Bounds on self-dual \([[n,0,d]]\) Hermitian codes based on graphs have been derived [13].Qubit Hermitian codes for \(n < 10\) have been classified [5].

Cousins

  • Dual linear code— Hermitian qubit codes are constructed from Hermitian self-orthogonal linear codes over \(GF(4)\) via the \(GF(4)\) representation.
  • Constacyclic code— Duadic constacyclic codes yield many examples of Hermitian qubit codes [14].
  • Graph-adjacency code— Bounds on self-dual \([[n,0,d]]\) Hermitian codes based on graphs have been derived [13].
  • Perfect-tensor code— The sole codeword of some \([[n,0,d]]\) Hermitian codes is an AME state [15].
  • Self-dual linear code— Hermitian qubit codes are constructed from Hermitian self-orthogonal linear codes over \(GF(4)\) via the \(GF(4)\) representation. This relation yields bounds on self-dual codes over \(GF(4)\) [10].
  • Qubit CSS code— A Hermitian qubit code that can be put into CSS form via single-qubit Clifford operations remains Hermitian [5].
  • Perfect quantum code— The only perfect qubit codes are the Hermitian qubit code family \([[(4^r-1)/3, (4^r-1)/3 - 2r, 3]]\) for \(r \geq 2\), obtained from Hamming codes over \(GF(4)\) [1,16].
  • \([[13,1,5]]\) cyclic code— A different cyclic \([[13,1,5]]\) code can be derived from a quaternary QR code using the Hermitian construction [17]; see [19][18; pg. 11].
  • Qubit BCH code— Hermitian self-orthogonal quaternary BCH codes are used to construct a subset of qubit BCH codes via the Hermitian construction.

References

[1]
A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
[2]
M. F. Ezerman, "Quantum Error-Control Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[3]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[4]
E. M. Rains, “Quantum codes of minimum distance two”, (1997) arXiv:quant-ph/9704043
[5]
A. Cross and D. Vandeth, “Small Binary Stabilizer Subsystem Codes”, (2025) arXiv:2501.17447
[6]
D. Gottesman, “Stabilizer Codes and Quantum Error Correction”, (1997) arXiv:quant-ph/9705052
[7]
D. Gottesman, “Theory of fault-tolerant quantum computation”, Physical Review A 57, 127 (1998) arXiv:quant-ph/9702029 DOI
[8]
E. M. Rains, “Nonbinary quantum codes”, (1997) arXiv:quant-ph/9703048
[9]
P. Rall, “Signed quantum weight enumerators characterize qubit magic state distillation”, (2017) arXiv:1702.06990
[10]
A. R. Kalra and S. Prakash, “Invariant Theory and Magic State Distillation”, (2025) arXiv:2501.10163
[11]
L. E. Danielsen, “On Self-Dual Quantum Codes, Graphs, and Boolean Functions”, (2005) arXiv:quant-ph/0503236
[12]
L. E. Danielsen and M. G. Parker, “On the classification of all self-dual additive codes over GF(4) of length up to 12”, Journal of Combinatorial Theory, Series A 113, 1351 (2006) arXiv:math/0504522 DOI
[13]
V. D. Tonchev, “Error-correcting codes from graphs”, Discrete Mathematics 257, 549 (2002) DOI
[14]
R. Dastbasteh, J. E. Martinez, A. Nemec, A. deMarti iOlius, and P. C. Bofill, “An infinite class of quantum codes derived from duadic constacyclic codes”, (2024) arXiv:2312.06504
[15]
Z. Raissi, “Modifying Method of Constructing Quantum Codes From Highly Entangled States”, IEEE Access 8, 222439 (2020) arXiv:2005.01426 DOI
[16]
D. Gottesman, “Pasting Quantum Codes”, (1996) arXiv:quant-ph/9607027
[17]
E. Rains, private communication, April 1997.
[18]
F. Vatan, V. P. Roychowdhury, and M. P. Anantram, “Spatially Correlated Qubit Errors and Burst-Correcting Quantum Codes”, (1997) arXiv:quant-ph/9704019
[19]
R. Dastbasteh and P. Lisonek, “New quantum codes from self-dual codes over F_4”, (2022) arXiv:2211.00891
[20]
A. J. Scott, “Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions”, Physical Review A 69, (2004) arXiv:quant-ph/0310137 DOI
[21]
G. D. Forney, M. Grassl, and S. Guha, “Convolutional and Tail-Biting Quantum Error-Correcting Codes”, IEEE Transactions on Information Theory 53, 865 (2007) arXiv:quant-ph/0511016 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: stabilizer_over_gf4

Cite as:
“Hermitian qubit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stabilizer_over_gf4
BibTeX:
@incollection{eczoo_stabilizer_over_gf4, title={Hermitian qubit code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/stabilizer_over_gf4} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/stabilizer_over_gf4

Cite as:

“Hermitian qubit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stabilizer_over_gf4

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/hermitian/stabilizer_over_gf4.yml.